Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838574

RESUMO

In the present study, the binding affinity of 52 bioactive secondary metabolites from Wedelia trilobata towards the anti-apoptotic B-cell lymphoma-2 (Bcl-2) protein (PDB: 2W3L) structure was identified by using in silico molecular docking and molecular dynamics simulation. The molecular docking results demonstrated that the binding energies of docked compounds with Bcl-2 protein ranged from -5.3 kcal/mol to -10.1 kcal/mol. However, the lowest binding energy (-10.1 kcal/mol) was offered by Friedelin against Bcl-2 protein when compared to other metabolites and the standard drug Obatoclax (-8.4 kcal/mol). The molecular dynamics simulations revealed that the Friedelin-Bcl-2 protein complex was found to be stable throughout the simulation period of 100 ns. Overall, the predicted Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties of Friedelin are relatively better than Obatoclax, with the most noticeable differences in many parameters where Friedelin has no AMES toxicity, hepatotoxicity, and skin sensitization. The ADMET profiling of selected compounds supported their in silico drug-likeness properties. Based on the computational analyses, the present study concluded that Friedelin of W. trilobata was found to be the potential inhibitor of the Bcl-2 protein, which merits attention for further in vitro and in vivo studies before clinical trials.


Assuntos
Neoplasias , Compostos Fitoquímicos , Wedelia , Humanos , Proteínas Reguladoras de Apoptose , Sobrevivência Celular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Wedelia/química , Compostos Fitoquímicos/farmacologia
2.
Molecules ; 28(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36770771

RESUMO

Bacterial infections are one of the leading causes of morbidity, mortality, and healthcare complications in patients. Leptospirosis is found to be the most prevalent, re-emergent, and neglected tropical zoonotic disease worldwide. The adaptation to various environmental conditions has made Leptospira acquire a large genome (~4.6 Mb) and a complex outer membrane, making it unique among bacteria that mimic the symptoms of jaundice and hemorrhage. Sph2 is another important virulence factor that enhances hemolytic sphingomyelinase-capable of moving inside mitochondria-which increases the ROS level and decreases the mitochondrial membrane potential, thereby leading to cell apoptosis. In the present study, 25 suspected bovine serum samples were subjected to the Microscopic Agglutination Test (MAT) across the Mysuru region. Different samples, such as urine, serum, and aborted materials from the confirmed MAT-positive animals, were used for isolation and genomic detection by conventional PCR targeting virulence gene, Lipl32, using specific primers. Further, in vitro and in silico studies were performed on isolated cultures to assess the anti-leptospiral, anti-hemolytic, and sphingomyelinase enzyme inhibition using novel pseudopeptides. The microdilution technique (MDT) and dark field microscope (DFM) assays revealed that at a concentration of 62.5 µg/mL, the pseudopeptide inhibited 100% of the growth of Leptospira spp., suggesting its efficiency in the treatment of leptospirosis. The flow cytometry analyses show the potency of the pseudopeptide against sphingomyelinase enzymes using human umbilical vein endothelial cells (HUVECs). Thus, the present study demonstrated the efficacy of the pseudopeptide in the inhibition of the growth of Leptospira, and therefore, this can be used as an alternative drug for the treatment of leptospirosis.


Assuntos
Anti-Infecciosos , Leptospira , Leptospirose , Animais , Humanos , Células Endoteliais , Leptospira/genética , Leptospirose/tratamento farmacológico , Leptospirose/diagnóstico , Leptospirose/microbiologia , Esfingomielina Fosfodiesterase , Hemostáticos/farmacologia
3.
Molecules ; 27(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35458641

RESUMO

Cancer is one of the leading causes of death worldwide, accountable for a total of 10 million deaths in the year 2020, according to GLOBOCAN 2020. The advancements in the field of cancer research indicate the need for direction towards the development of new drug candidates that are instrumental in a tumour-specific action. The pool of natural compounds proves to be a promising avenue for the discovery of groundbreaking cancer therapeutics. Elaeocarpus ganitrus (Rudraksha) is known to possess antioxidant properties and after a thorough review of literature, it was speculated to possess significant biomedical potential. Green synthesis of nanoparticles is an environmentally friendly approach intended to eliminate toxic waste and reduce energy consumption. This approach was reported for the synthesis of silver nanoparticles from two different solvent extracts: aqueous and methanolic. These were characterized by biophysical and spectroscopic techniques, namely, UV-Visible Spectroscopy, FTIR, XRD, EDX, DLS, SEM, and GC-MS. The results showed that the nanoconjugates were spherical in geometry. Further, the assessment of antibacterial, antifungal, and antiproliferative activities was conducted which yielded results that were qualitatively positive at the nanoscale. The nanoconjugates were also evaluated for their anticancer properties using a standard MTT Assay. The interactions between the phytochemicals (ligands) and selected cancer receptors were also visualized in silico using the PyRx tool for molecular docking.


Assuntos
Elaeocarpaceae , Nanopartículas Metálicas , Antibacterianos/química , Química Verde , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Nanoconjugados , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Prata/química , Prata/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Molecules ; 27(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35209226

RESUMO

Researchers are interested in Schiff bases and their metal complexes because they offer a wide range of applications. The chemistry of Schiff bases of heterocompounds has got a lot of attention because of the metal's ability to coordinate with Schiff base ligands. In the current study, a new bidentate Schiff base ligand, N-((1H-pyrrol-2-yl)methylene)-6-methoxypyridin-3-amine (MPM) has been synthesized by condensing 6-methoxypyridine-3-amine with pyrrole-2-carbaldehyde. Further, MPM is used to prepare Cu(II) and Co(II) metal complexes. Analytical and spectroscopic techniques are used for the structural elucidation of the synthesized compounds. Both MPM and its metal complexes were screened against Escherichia coli, Bacillus subtilis, Staphylococcus aureus and Klebsiella pneumoniae species for antimicrobial studies. Furthermore, these compounds were subjected to in silico studies against bacterial proteins to comprehend their best non-bonded interactions. The results confirmed that the Schiff base ligand show considerably higher binding affinity with good hydrogen bonding and hydrophobic interactions against various tested microbial species. These results were complemented with a report of the Conceptual DFT global reactivity descriptors of the studied compounds together with their biological scores and their ADMET computed parameters.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Cobalto/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/síntese química , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Bases de Schiff/química , Análise Espectral
5.
Molecules ; 25(12)2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580359

RESUMO

Herein we report the synthesis and structural elucidation of two novel imine-based ligands, 2-(1,10-phenanthrolin-5-yl)imino)methyl)-5-bromophenol (PIB) and N-(1,10-phenanthrolin-5-yl)-1-(thiophen-3-yl)methanimine (PTM) ligands. An in vitro cytotoxicity assay of the synthesized molecules was carried out against breast, cervical, colorectal, and prostate cancer cell lines as well as immortalized human keratinocytes. The observations indicated that both the molecules possesses dose-dependent selective cytotoxicity of cancer cells with no detrimental effect on the normal cell lines. Furthermore, the detailed computational analysis of newly synthetized ligands (PIB and PTM) has been conducted in order to identify their most important parts from the perspective of local reactivity. The IC50 values of PIB treatment on MCF-7, HeLa, HCT-116 and PC-3 were 15.10, 16.25, 17.88, 17.55 and 23.86 micromoles, respectively. Meanwhile, the IC50 values of PTM on MCF-7, HeLa, HCT-116, PC-3 and HaCat were observed to be 14.82, 15.03, 17.88, 17.28 and 21.22 micromoles, respectively. For computational analysis, we have employed the combination of Density Functional Theory (DFT) calculations and MD simulations. DFT calculations provided us with information about structure and reactivity descriptors based on the electron distribution. Surfaces of molecular electrostatic potential (MEP) and averaged local ionization energy (ALIE) indicated the sites within studied molecules that are most reactive. These results indicated the importance of nitrogen atoms and OH group. Additionally, the values of bond dissociation for hydrogen abstraction showed that both molecules, especially the PTM, are stable toward the influence of autoxidation mechanism. On the other side, MD simulations gave us an insight how ligands interact with water molecules. Namely, the radial distribution functions (RDF) indicated that the hydrogen atom of the OH group in the case of the PIB has the most pronounced interactions with water.


Assuntos
Proliferação de Células/efeitos dos fármacos , Iminas/farmacologia , Neoplasias/tratamento farmacológico , Fenantrolinas/farmacologia , Linhagem Celular Tumoral , Humanos , Iminas/síntese química , Iminas/química , Ligantes , Simulação de Acoplamento Molecular , Neoplasias/patologia , Fenantrolinas/síntese química , Fenantrolinas/química , Água/química
6.
Molecules ; 25(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143044

RESUMO

The increasing interest in developing potent non-toxic drugs in medicine is widening the opportunities for studying the usage of nanostructures in the treatment of various diseases. The present work reports a method for a facile and an eco-friendly synthesis of silver nanoparticles (AgNPs) using Terminalia chebula fruit extract (TCE). The obtained AgNPs was characterized by using different spectroscopic and microscopic techniques. The analysis of the results revealed that the as-obtained AgNPs have spherical morphology with an average diameter of 22 nm. Furthermore, the preliminary bioactivity evaluations revealed that the bio-conjugation of AgNPs, using TCE, significantly enhanced the antibacterial and anti-breast cancer potentials of the latter. The antibacterial activity of the as-prepared AgNPs showed that B. subtilis was more sensitive towards the AgNPs, followed by P. aeruginosa; while, E. coli and S. mutans showed comparatively minimal sensitivity toward the AgNPs. The IC50 values of TCE, AgNPs and TCE + AgNPs treatment of MCF-7 were found to be 17.53, 14.25 and 6.484 µg/mL, respectively. Therefore, it can be ascertained that the bio-conjugation may provide a headway with regard to the therapeutic employment of T. chebula, upon mechanistically understanding the basis of observed antibacterial and anticancer activities.


Assuntos
Anti-Infecciosos , Bacillus subtilis/crescimento & desenvolvimento , Neoplasias da Mama/tratamento farmacológico , Citotoxinas , Frutas/química , Nanopartículas Metálicas , Extratos Vegetais/química , Prata , Terminalia/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Feminino , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Prata/química , Prata/farmacologia
7.
Front Chem ; 12: 1286675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38867763

RESUMO

Chromobacterium violaceum an opportunistic human pathogenic bacterium, exhibits resistance to conventional antibiotics by exploiting its quorum sensing mechanism to regulate virulence factor expression. In light of this, disrupting the quorum sensing mechanism presents a promising avenue for treating infections caused by this pathogen. The study focused on using the cytoplasmic quorum sensing receptor CviR from C. violaceum as a model target to identify novel quorum sensing inhibitors from P. quassioides through in silico computational approaches. Molecular docking analyses unveiled that several phytochemicals derived from Picrasma quassioides exhibit the potential to inhibit quorum sensing by binding to CviR protein. Notably, the compounds such as Quassidine I (- 8.8 kcal/mol), Quassidine J (- 8.8 kcal/mol), Kumudine B (- 9.1 kcal/mol) and Picrasamide A (- 8.9 kcal/mol) exhibited high docking scores, indicating strong binding affinity to the CviR protein. The native ligand C6-HSL (N-hexanoyl-L-homoserine lactone) as a positive control/co-crystal inhibitor also demonstrated a significant binding energy of-7.7 kcal/mol. The molecular dynamics simulation for 200 ns showed the thermodynamic stability and binding affinity refinement of the top-ranked CviR inhibitor (Kumudine B) with its stable binding and minor fluctuations compared to positive control (C6-HSL). Pharmacokinetic predictions indicated that Kumudine B possesses favourable drug-like properties, which suggest its potential as a drug candidate. The study highlight Kumudine B as a potential agent for inhibiting the CviR protein in C. violaceum. The comprehensive evaluation of Kumudine B provides valuable insights into its pharmacological profiles, facilitating its assessment for diverse therapeutic applications and guiding future research activities, particularly as antibacterial agents for clinical drug development.

8.
PLoS One ; 19(1): e0296010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266021

RESUMO

The present study explores the epidermal growth factor receptor (EGFR) tyrosine kinase inhibition efficacy of secondary metabolites in Trichoderma spp. through molecular docking, molecular dynamics (MD) simulation and MM-PBSA approach. The result of molecular docking confirmed that out of 200 metabolites screened, three metabolites such as Harzianelactone A, Pretrichodermamide G and Aspochalasin M, potentially bound with the active binding site of EGFR tyrosine kinase domain(PDB ID: 1M17) with a threshold docking score of ≤- 9.0 kcal/mol when compared with the standard EGFR inhibitor (Erlotinib). The MD simulation was run to investigate the potential for stable complex formation in EGFR tyrosine kinase domain-unbound/lead metabolite (Aspochalasin M)-bound/standard inhibitor (Erlotinib)-bound complex. The MD simulation analysis at 100 ns revealed that Aspochalasin M formed the stable complex with EGFR. Besides, the in silico predication of pharmacokinetic properties further confirmed that Aspochalasin M qualified the drug-likeness rules with no harmful side effects (viz., hERG toxicity, hepatotoxicity and skin sensitization), non-mutagenicity and favourable logBB value. Moreover, the BOILED-Egg model predicted that Aspochalasin M showed a higher gastrointestinal absorption with improved bioavailability when administered orally and removed from the central nervous system (CNS). The results of the computational studies concluded that Aspochalasin M possessed significant efficacy in binding EGFR's active sites compared to the known standard inhibitor (Erlotinib). Therefore, Aspochalasin M can be used as a possible anticancer drug candidate and further in vitro and in vivo experimental validation of Aspochalasin M of Trichoderma spp. are required to determine its anticancer potential.


Assuntos
Trichoderma , Cloridrato de Erlotinib , Simulação de Acoplamento Molecular , Receptores ErbB
9.
BMC Complement Med Ther ; 23(1): 167, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217985

RESUMO

BACKGROUND: Viscum orientale is a largely used parasitic plant with traditional medicinal properties. They are considered to possess the medicinal properties of host tree which they grow on. It's a least explored plant with ethanopharmacological importance. As a result, the current work aimed to investigate the biological effects of Viscum orientale extract and silver nanoparticles (AgNPs) generated from it. METHODS: AgNPs synthesized using Viscum orientale plant extract and analysed on time dependent series and was characterized using Ultra Violet UV-visible spectra, Fourier Transform Infrared Spectroscopy FTIR, X-ray diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDX), Scanning Electron Microscopy (SEM). Further using disc method anti-microbial assay was performed following antioxidation screening using 1,1-diphenyl-2-picryl-hydrazyl (DPPH), reducing power and nitric oxide content and heamgglutination with human blood. RESULTS: On green synthesis using silver, the phyto contituents of plant Viscum orientale effectively reduced silver ions at 3-4 h of continuous stirring to form AgNPs. UV-vis spectra showed a typical peak of AgNPs at 480 nm. The FTIR analysis confirmed the covering of silver layers to bio-compounds of the extract. SEM analysis represented AgNPs as spherical morphologies ranging from 119-222 nm. AgNPs exhibited impressive zone of inhibition against Escherichia coli (8.1 ± 0.3 mm), Staphylococcus aureus (10.3 ± 0.3 mm), Bacillus subtilis (7.3 ± 0.3 mm), Bacillus cereus (8.2 ± 0.3 mm), Salmonella typhi (7.1 ± 0.2 mm). AgNps exhibited efficiency against DPPH at EC50 value of 57.60 µg/ml. and reducing power at EC50 of 53.42 µg/ml and nitric oxide scavenging of EC50 of 56.01 µg/ml concentration. Further, anthelmintic activity results showed synthesized nanoparticles significant reduction in the paralysis time to 5.4 ± 0.3 min and death time to 6.5 ± 0.6 min in contrast to the individual factors. On hemagglutination using AgNPs, above 80 µg/ml of concentration showed very significant effect on comparison with water extract. CONCLUSION: Synthesized AgNPs using Viscum orientale water extract displayed versatile biological activity than individual extract. This study has forecasted a new path to explore more on this AgNPs for further research.


Assuntos
Anti-Helmínticos , Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Óxido Nítrico , Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
10.
ACS Omega ; 8(25): 22684-22697, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396248

RESUMO

Lablab purpureus from the Fabaceae family has been reported to have antiviral properties and used in traditional medical systems like ayurveda and Chinese medicine and has been employed to treat a variety of illnesses including cholera, food poisoning, diarrhea, and phlegmatic diseases. The bovine alphaherpesvirus-1 (BoHV-1) is notorious for causing significant harm to the veterinary and agriculture industries. The removal of the contagious BoHV-1 from host organs, particularly in those reservoir creatures, has required the use of antiviral drugs that target infected cells. This study developed LP-CuO NPs from methanolic crude extracts, and FTIR, SEM, and EDX analyses were used to confirm their formation. SEM analysis revealed that the LP-CuO NPs had a spherical shape with particle sizes between 22 and 30 nm. Energy-dispersive X-ray pattern analysis revealed the presence of only copper and oxide ions. By preventing viral cytopathic effects in the Madin-Darby bovine kidney cell line, the methanolic extract of Lablab purpureus and LP-CuO NPs demonstrated a remarkable dose-dependent anti-BoHV-1 action in vitro. Furthermore, molecular docking and molecular dynamics simulation studies of bio-actives from Lablab purpureus against the BoHV-1 viral envelope glycoprotein disclosed effective interactions between all phytochemicals and the protein, although kievitone was found to have the highest binding affinity, with the greatest number of interactions, which was also validated with molecular dynamics simulation studies. Understanding the chemical reactivity qualities of the four ligands was taken into consideration facilitated by the global and local descriptors, which aimed to predict the chemical reactivity descriptors of the studied molecules through the conceptual DFT methodology, which, along with ADMET finding, support the in vitro and in silico results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA