Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269673

RESUMO

Atherogenic events promote changes in vessel walls, with alteration of the redox state, and increased activity of matrix metalloproteinases (MMPs). Thus, this study aims to evaluate aortic remodeling, MMP activity, and reactive oxygen species (ROS) levels after treatment with doxycycline in ApoE-/- and ovariectomized mice (OVX). Female ApoE-/--knockout mice (5 weeks) were submitted to ovariectomy surgery to induce experimental menopause. They then received chow enriched with 1% cholesterol to induce hypercholesterolemia. The animals were divided into two experimental groups: ApoE-/-/OVX vehicle and ApoE-/-/OVX doxycycline (30 mg/kg) administered by gavage once a day for 28 days (15th to the 18th week of life). Blood samples were collected to measure total cholesterol and fractions. The aorta was used for morphometry and to measure the activity and expression of MMP-2 and ROS levels. The ApoE-/-/OVX doxycycline group showed no change in total and fraction cholesterol levels. However, there was a reduction in ROS levels, MMP-2 expression, and activity that correlated with a decrease in atherosclerotic lesions relative to the ApoE-/-/OVX vehicle (p > 0.05). Therefore, we conclude that doxycycline in ApoE-/-/OVX animals promotes a reduction in atherosclerotic lesions by reducing ROS and MMP-2 activity and expression.


Assuntos
Aterosclerose , Doxiciclina , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Doxiciclina/farmacologia , Feminino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Espécies Reativas de Oxigênio/metabolismo
2.
Biomolecules ; 11(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923477

RESUMO

Various pathophysiological mechanisms have been implicated in hypertension, but those resulting in vascular dysfunction and remodeling are critical and may help to identify critical pharmacological targets. This mini-review article focuses on central mechanisms contributing to the vascular dysfunction and remodeling of hypertension, increased oxidative stress and impaired nitric oxide (NO) bioavailability, which enhance vascular matrix metalloproteinase (MMP) activity. The relationship between NO, MMP and oxidative stress culminating in the vascular alterations of hypertension is examined. While the alterations of hypertension are not fully attributable to these pathophysiological mechanisms, there is strong evidence that such mechanisms play critical roles in increasing vascular MMP expression and activity, thus resulting in abnormal degradation of extracellular matrix components, receptors, peptides, and intracellular proteins involved in the regulation of vascular function and structure. Imbalanced vascular MMP activity promotes vasoconstriction and impairs vasodilation, stimulating vascular smooth muscle cells (VSMC) to switch from contractile to synthetic phenotypes, thus facilitating cell growth or migration, which is associated with the deposition of extracellular matrix components. Finally, the protective effects of MMP inhibitors, antioxidants and drugs that enhance vascular NO activity are briefly discussed. Newly emerging therapies that address these essential mechanisms may offer significant advantages to prevent vascular remodeling in hypertensive patients.


Assuntos
Hipertensão/metabolismo , Metaloproteinases da Matriz/metabolismo , Óxido Nítrico/metabolismo , Animais , Humanos , Hipertensão/patologia , Hipertensão/fisiopatologia , Estresse Oxidativo , Remodelação Vascular , Vasoconstrição
3.
Curr Hypertens Rev ; 17(1): 47-58, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32386496

RESUMO

Matrix metalloproteinases (MMPs) are enzymes that present a metallic element in their structure. These enzymes are ubiquitously distributed and function as extracellular matrix (ECM) remodelers. MMPs play a broad role in cardiovascular biology regulating processes such as cell adhesion and function, cellular communication and differentiation, integration of mechanical force and force transmission, tissue remodeling, modulation of damaged-tissue structural integrity, cellular survival or apoptosis and regulation of inflammation-related cytokines and growth factors. MMPs inhibition and downregulation are correlated with minimization of cardiac damage, i.e., Chinese herbal medicine has shown to stabilize abdominal aorta aneurysm due to its antiinflammatory, antioxidant and MMP-2 and 9 inhibitory properties. Thus phyto-derived products rise as promising sources for novel therapies focusing on MMPs inhibition and downregulation to treat or prevent cardiovascular disorders.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Matriz Extracelular , Humanos , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Metaloproteinases da Matriz
4.
Parasitol Int ; 83: 102347, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33862253

RESUMO

Leishmania is an obligate intracellular parasite that primarily inhabits macrophages. The destruction of the parasite in the host cell is a fundamental mechanism for infection control. In addition, inhibition of the leishmanicidal activity of macrophages seems to be related to the ability of some species to inhibit the production of nitric oxide (NO) by depleting arginine. Some species of Leishmania have the ability to produce NO from a constitutive nitric oxide synthase-like enzyme (cNOS-like). However, the localization of cNOS-like in Leishmania has not been described before. As such, this study was designed to locate cNOS-like enzyme and NO production in promastigotes of Leishmania (Leishmania) amazonensis and Leishmania (Viannia) braziliensis. NO production was initially quantified by flow cytometry, which indicated a significant difference in NO production between L. (L.) amazonensis (GMFC = 92.17 +/- 4.6) and L. (V.) braziliensis (GMFC = 18.89 +/- 2.29) (P < 0.05). Analysis of cNOS expression by immunoblotting showed more expression in L. (L.) amazonensis versus L. (V.) braziliensis. Subsequently, cNOS-like immunolabeling was observed in promastigotes in regions near vesicles, the flagellar pocket and mitochondria, and small clusters of particles appeared to be fusing with vesicles suggestive of glycosomes, peroxisome-like-organelles that compartmentalize the glycolytic pathway in trypanosomatid parasites. In addition, confocal microscopy analysis demonstrated colocalization of cNOS-like and GAPDH, a specific marker for glycosomes. Thus, L. (L.) amazonensis produces greater amounts of NO than L. (V.) braziliensis, and both species present the cNOS-like enzyme inside glycosomes.


Assuntos
Leishmania braziliensis/enzimologia , Leishmania mexicana/enzimologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/biossíntese , Proteínas de Protozoários/metabolismo , Leishmaniose Cutânea/metabolismo , Leishmaniose Mucocutânea/metabolismo , Especificidade da Espécie
5.
Redox Biol ; 18: 181-190, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30029165

RESUMO

Increased reactive oxygen species (ROS) formation may enhance matrix metalloproteinase (MMP)-2 activity and promote cardiovascular dysfunction. We show for the first time that MMP-2 is upstream of increased ROS formation and activates signaling mechanisms impairing redox balance. Incubation of vascular smooth muscle cells (VSMC) with recombinant MMP-2 increased ROS formation assessed with dihydroethidium (DHE) by flow cytometry. This effect was blocked by the antioxidant apocynin or by polyethylene glycol-catalase (PEG-catalase), and by MMP inhibitors (doxycycline or GM6001). Next, we showed in HEK293 cells that MMP-2 transactivates heparin-binding epidermal growth factor (HB-EGF) leading to EGF receptor (EGFR) activation and increased ROS concentrations. This effect was prevented by the EGFR kinase inhibitor Ag1478, and by phospholipase C (PLC) or protein kinase C (PKC) inhibitors (A778 or chelerythrine, respectively), confirming the involvement of EGFR pathway in MMP-2-induce responses. Next, we showed that intraluminal exposure of aortas to MMP-2 increased vascular MMP-2 levels detected by immunofluorescence and gelatinolytic activity (by in situ zimography) in association with increased ROS formation. This effect was inhibited by MMP inhibitors (phenanthroline or doxycycline) and by apocynin or PEG-catalase. MMP-2 also increased aortic contractility to phenylephrine and this effect was prevented by MMP inhibitor GM6001 and by apocynin or PEG-catalase, showing again that increased ROS formation mediates functional effects of MMP-2. These results show that MMP-2 activates the EGFR and triggers downstream signaling pathways increasing ROS formation and promoting vasoconstriction. These findings may have various implications for cardiovascular diseases.


Assuntos
Aorta/fisiologia , Receptores ErbB/genética , Metaloproteinase 2 da Matriz/metabolismo , Músculo Liso Vascular/fisiologia , Ativação Transcricional , Vasoconstrição , Animais , Aorta/citologia , Linhagem Celular , Receptores ErbB/metabolismo , Masculino , Músculo Liso Vascular/citologia , Oxirredução , Coelhos , Ratos , Espécies Reativas de Oxigênio/metabolismo
6.
Curr Pharm Des ; 24(16): 1801-1810, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29865998

RESUMO

Osteoporosis and cardiovascular diseases are common causes of morbidity and mortality worldwide, especially in people aged over 60 years. Osteoporosis is characterized by low bone mineral density, which deteriorates the microarchitecture of bones and increases the risk of bone fractures. Other pathologies also constitute risk factors for the development of osteoporosis, mainly cardiovascular diseases. In fact, a growing number of reports have shown a positive correlation between cardiovascular diseases and low bone mineral density. MMPs are proteases that participate in the organized degradation of the extracellular matrix (ECM) and which play essential physiological roles, such as cardiovascular and bone tissue remodeling. Overexpression of MMPs underlies pathological processes like osteoporosis and cardiovascular diseases. MMP-1, -2, -9, -13, and -14 are expressed in bone tissue and are key players in the digestion of bone matrix by osteoblasts. Considering this relationship between osteometabolic and cardiovascular pathologies and MMPs, this review focuses on the involvement of MMPs in osteoporosis and on their participation in cardiovascular diseases; it also deals with the positive correlation between osteoporosis and cardiovascular diseases. Although there are many drugs to treat osteoporosis, controversies exist. Here, we will describe these controversies and will discuss how inhibition of MMPs could be an alternative strategy to or an adjuvant therapy in the current treatment of osteoporosis.


Assuntos
Doenças Cardiovasculares/metabolismo , Metaloproteinases da Matriz/metabolismo , Osteoporose/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Humanos , Osteoporose/tratamento farmacológico , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia
7.
Front Physiol ; 7: 226, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445832

RESUMO

AIMS: To evaluate the role of nitric oxide, reactive oxygen species (ROS), and natriuretic peptide receptor-B activation in C-type natriuretic peptide-anti-contractile effect on Phenylephrine-induced contraction in aorta isolated from septic rats. METHODS AND RESULTS: Cecal ligation and puncture (CLP) surgery was used to induce sepsis in male rats. Vascular reactivity was conducted in rat aorta and resistance mesenteric artery (RMA). Measurement of survival rate, mean arterial pressure (MAP), plasma nitric oxide, specific protein expression, and localization were evaluated. Septic rats had a survival rate about 37% at 4 h after the surgery, and these rats presented hypotension compared to control-operated (Sham) rats. Phenylephrine-induced contraction was decreased in sepsis. C-type natriuretic peptide (CNP) induced anti-contractile effect in aortas. Plasma nitric oxide was increased in sepsis. Nitric oxide-synthase but not natriuretic peptide receptor-B expression was increased in septic rat aortas. C-type natriuretic peptide-anti-contractile effect was dependent on nitric oxide-synthase, ROS, and natriuretic peptide receptor-B activation. Natriuretic peptide receptor-C, protein kinase-Cα mRNA, and basal nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ROS production were lower in septic rats. Phenylephrine and CNP enhanced ROS production. However, stimulated ROS production was low in sepsis. CONCLUSION: CNP induced anti-contractile effect on Phenylephrine contraction in aortas from Sham and septic rats that was dependent on nitric oxide-synthase, ROS, and natriuretic peptide receptor-B activation.

8.
Eur J Pharmacol ; 783: 11-22, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27118175

RESUMO

Diabetes mellitus is associated with reactive oxygen and nitrogen species accumulation. Behavioral stress increases nitric oxide production, which may trigger a massive impact on vascular cells and accelerate cardiovascular complications under oxidative stress conditions such as Diabetes. For this study, type-1 Diabetes mellitus was induced in Wistar rats by intraperitoneal injection of streptozotocin. After 28 days, cumulative concentration-response curves for angiotensin II were obtained in endothelium-intact carotid rings from diabetic rats that underwent to acute restraint stress for 3h. The contractile response evoked by angiotensin II was increased in carotid arteries from diabetic rats. Acute restraint stress did not alter angiotensin II-induced contraction in carotid arteries from normoglycaemic rats. However acute stress combined with Diabetes increased angiotensin II-induced contraction in carotid rings. Western blot experiments and the inhibition of nitric oxide synthases in functional assays showed that neuronal, endothelial and inducible nitric oxide synthase isoforms contribute to the increased formation of peroxynitrite and contractile hyperreactivity to angiotensin II in carotid rings from stressed diabetic rats. In summary, these findings suggest that the increased superoxide anion generation in carotid arteries from diabetic rats associated to the increased local nitric oxide synthases expression and activity induced by acute restrain stress were responsible for exacerbating the local formation of peroxynitrite and the contraction induced by angiotensin II.


Assuntos
Angiotensina II/farmacologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/biossíntese , Ácido Peroxinitroso/biossíntese , Estresse Psicológico/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Artérias Carótidas/efeitos dos fármacos , Artérias Carótidas/fisiopatologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/psicologia , Diabetes Mellitus Tipo 1/fisiopatologia , Diabetes Mellitus Tipo 1/psicologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Óxido Nítrico Sintase/química , Fenilefrina/farmacologia , Fosforilação/efeitos dos fármacos , Ratos , Ratos Wistar , Restrição Física , Vasoconstrição/efeitos dos fármacos
9.
Eur J Pharmacol ; 764: 173-188, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26144375

RESUMO

AT1 antagonists effectively prevent atherosclerosis since AT1 upregulation and angiotensin II-induced proinflammatory actions are critical to atherogenesis. Despite the classic mechanisms underlying the vasoprotective and atheroprotective actions of AT1 antagonists, the cross-talk between angiotensin-converting enzyme-angiotensin II-AT1 and angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axes suggests other mechanisms beyond AT1 blockage in such effects. For instance, angiotensin-converting enzyme 2 activity is inhibited by reactive oxygen species derived from AT1-mediated proinflammatory signaling. Since angiotensin-(1-7) promotes antiatherogenic effects, we hypothesized that the vasoprotective and atheroprotective effects of AT1 antagonists could result from their inhibitory effects on the AT1-mediated negative modulation of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality. Interestingly, our results showed that early atherosclerosis triggered in thoracic aorta from high cholesterol fed-Apolipoprotein E-deficient mice impairs angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis functionality by a proinflammatory-redox AT1-mediated pathway. In such mechanism, AT1 activation leads to the aortic release of tumor necrosis factor-α, which stimulates NAD(P)H oxidase/Nox1-driven generation of superoxide and hydrogen peroxide. While hydrogen peroxide inhibits angiotensin-converting enzyme 2 activity, superoxide impairs MAS functionality. Candesartan treatment restored the functionality of angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis by inhibiting the proinflammatory-redox AT1-mediated mechanism. Candesartan also promoted vasoprotective and atheroprotective effects that were mediated by MAS since A779 (MAS antagonist) co-treatment inhibited them. The role of MAS receptors as the final mediators of the vasoprotective and atheroprotective effects of candesartan was supported by the vascular actions of angiotensin-(1-7) upon the recovery of the functionality of vascular angiotensin-converting enzyme 2-angiotensin-(1-7)-MAS axis.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Angiotensina I/metabolismo , Benzimidazóis/farmacologia , Cardiotônicos/farmacologia , Fragmentos de Peptídeos/metabolismo , Peptidil Dipeptidase A/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Tetrazóis/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Apolipoproteínas E/genética , Aterosclerose/sangue , Aterosclerose/patologia , Compostos de Bifenilo , Colesterol/sangue , Citocinas/genética , Citocinas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , Proto-Oncogene Mas , Receptor Tipo 1 de Angiotensina/metabolismo , Triglicerídeos/sangue , Molécula 1 de Adesão de Célula Vascular/genética
10.
Eur J Pharmacol ; 765: 503-16, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26387612

RESUMO

Hyperglycemia increases the generation of reactive oxygen species and affects systems that regulate the vascular tone including renin-angiotensin system. Stress could exacerbate intracellular oxidative stress during Diabetes upon the activation of angiotensin AT1/NADPH oxidase pathway, which contributes to the development of diabetic cardiovascular complications. For this study, type-I Diabetes was induced in Wistar rats by intraperitoneal injection of streptozotocin. 28 days after streptozotocin injection, the animals underwent to acute restraint stress for 3 h. Cumulative concentration-response curves for angiotensin II were obtained in carotid rings pre-treated or not with Nox or cyclooxygenase inhibitors. Nox1 or Nox4 expression and activity were assessed by Western blotting and lucigenin chemiluminescence, respectively. The role of Nox1 and Nox4 on reactive oxygen species generation was evaluated by flow cytometry and Amplex Red assays. Cyclooxygenases expression was assessed by real-time polymerase chain reaction. The contractile response evoked by angiotensin II was increased in diabetic rat carotid. Acute restraint stress increased this response in this vessel by mechanisms mediated by Nox4, whose local expression and activity in generating hydrogen peroxide are increased. The contractile hyperreactivity to angiotensin II in stressed diabetic rat carotid is also mediated by metabolites derived from cyclooxygenase-2, whose local expression is increased. Taken together, our findings suggest that acute restraint stress exacerbates the contractile hyperreactivity to angiotensin II in diabetic rat carotid by enhancing Nox4-driven generation of hydrogen peroxide, which evokes contractile tone by cyclooxygenases-dependent mechanisms. Finally, these findings highlight the harmful role played by acute stress in modulating diabetic vascular complications.


Assuntos
Artérias Carótidas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , NADPH Oxidases/fisiologia , Estresse Psicológico/metabolismo , Acetilcolina/farmacologia , Angiotensina II/farmacologia , Animais , Artérias Carótidas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , NADPH Oxidase 4 , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Restrição Física/efeitos adversos , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia
11.
Basic Clin Pharmacol Toxicol ; 115(4): 301-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24974977

RESUMO

This MiniReview describes the essential biochemical and molecular aspects of matrix metalloproteinases (MMPs) and briefly discusses how they engage in different diseases, with particular emphasis on cardiovascular diseases. There is compelling scientific evidence that many MMPs, especially MMP-2, play important roles in the development of cardiovascular diseases; inhibition of these enzymes is beneficial to many cardiovascular conditions, sometimes precluding or postponing end-organ damage and fatal outcomes. Conducting comprehensive discussions and further studies on how MMPs participate in cardiovascular diseases is important, because inhibition of these enzymes may be an alternative or an adjuvant for current cardiovascular disease therapy.


Assuntos
Doenças Cardiovasculares/enzimologia , Metaloproteinases da Matriz/metabolismo , Animais , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/patologia , Modelos Animais de Doenças , Humanos , Inibidores de Metaloproteinases de Matriz/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA