Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Org Biomol Chem ; 18(5): 931-940, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31922157

RESUMO

The design of glycogen phosphorylase (GP) inhibitors targeting the catalytic site of the enzyme is a promising strategy for a better control of hyperglycaemia in the context of type 2 diabetes. Glucopyranosylidene-spiro-heterocycles have been demonstrated as potent GP inhibitors, and more specifically spiro-oxathiazoles. A new synthetic route has now been elaborated through 1,3-dipolar cycloaddition of an aryl nitrile oxide to a glucono-thionolactone affording in one step the spiro-oxathiazole moiety. The thionolactone was obtained from the thermal rearrangement of a thiosulfinate precursor according to Fairbanks' protocols, although with a revisited outcome and also rationalised with DFT calculations. The 2-naphthyl substituted glucose-based spiro-oxathiazole 5h, identified as one of the most potent GP inhibitors (Ki = 160 nM against RMGPb) could be produced on the gram-scale from this strategy. Further evaluation in vitro using rat and human hepatocytes demonstrated that compound 5h is a anti-hyperglycaemic drug candidates performing slightly better than DAB used as a positive control. Investigation in Zucker fa/fa rat model in acute and subchronic assays further confirmed the potency of compound 5h since it lowered blood glucose levels by ∼36% at 30 mg kg-1 and ∼43% at 60 mg kg-1. The present study is one of the few in vivo investigations for glucose-based GP inhibitors and provides data in animal models for such drug candidates.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Glicogênio Fosforilase/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Compostos de Espiro/farmacologia , Tiazóis/farmacologia , Animais , Glicemia/metabolismo , Ciclização , Teoria da Densidade Funcional , Glicogênio/metabolismo , Glicogênio Fosforilase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/química , Concentração Inibidora 50 , Cinética , Lactonas/síntese química , Lactonas/química , Oxirredução , Ratos Zucker , Compostos de Espiro/síntese química , Compostos de Espiro/química , Estereoisomerismo , Temperatura , Tiazóis/síntese química , Tiazóis/química
2.
Chem Rev ; 117(3): 1687-1764, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28121130

RESUMO

This Review summarizes close to 500 primary publications and surveys published since 2000 about the syntheses and diverse bioactivities of C-glycopyranosyl (het)arenes. A classification of the preparative routes to these synthetic targets according to methodologies and compound categories is provided. Several of these compounds, regardless of their natural or synthetic origin, display antidiabetic properties due to enzyme inhibition (glycogen phosphorylase, protein tyrosine phosphatase 1B) or by inhibiting renal sodium-dependent glucose cotransporter 2 (SGLT2). The latter class of synthetic inhibitors, very recently approved as antihyperglycemic drugs, opens new perspectives in the pharmacological treatment of type 2 diabetes. Various compounds with the C-glycopyranosyl (het)arene motif were subjected to biological studies displaying among others antioxidant, antiviral, antibiotic, antiadhesive, cytotoxic, and glycoenzyme inhibitory effects.


Assuntos
Hidrocarbonetos/química , Hipoglicemiantes/farmacologia , Glicosilação
3.
Chemistry ; 23(71): 18057-18065, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29024190

RESUMO

Xyloside analogues with substitution of the endocyclic oxygen atom by sulfur or carbon were investigated as substrates for ß-1,4-galactosyltransferase 7 (ß4GalT7), a key enzyme in the biosynthesis of glycosaminoglycan chains. The analogues with an endocyclic sulfur atom proved to be excellent substrates for ß4GalT7, and were galactosylated approximately fifteen times more efficiently than the corresponding xyloside. The 5a-carba-ß-xylopyranoside in the d-configuration proved to be a good substrate for ß4GalT7, whereas the enantiomer in the l-configuration showed no activity. Further investigations by X-ray crystallography, NMR spectroscopy, and molecular modeling provided a rationale for the pronounced activity of the sulfur analogues. Favorable π-π interactions between the 2-naphthyl moiety and a tyrosine side chain of the enzyme were observed for the thio analogues, which open up for the design of efficient GAG primers and inhibitors.


Assuntos
N-Acetil-Lactosamina Sintase/metabolismo , Compostos de Sulfidrila/química , Xilose/análogos & derivados , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Cinética , Conformação Molecular , Simulação de Acoplamento Molecular , N-Acetil-Lactosamina Sintase/química , Ressonância Magnética Nuclear Biomolecular , Teoria Quântica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Compostos de Sulfidrila/metabolismo , Xilose/metabolismo
4.
Bioorg Med Chem ; 24(21): 5423-5430, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27624527

RESUMO

A series of (benzimidazol-2-yl)-aniline (1) derivatives has been synthesized and evaluated as glycogen phosphorylase (GP) inhibitors. Kinetics studies revealed that compounds displaying a lateral heterocyclic residue with several heteroatoms (series 3 and 5) exhibited modest inhibitory properties with IC50 values in the 400-600µM range. Arylsulfonyl derivatives 7 (Ar: phenyl) and 9 (Ar: o-nitrophenyl) of 1 exhibited the highest activity (series 2) among the studied compounds (IC50 324µM and 357µM, respectively) with stronger effect than the p-tolyl analogue 8.


Assuntos
Compostos de Anilina/farmacologia , Benzimidazóis/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Compostos de Anilina/síntese química , Compostos de Anilina/química , Animais , Benzimidazóis/síntese química , Benzimidazóis/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Glicogênio Fosforilase/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Coelhos , Relação Estrutura-Atividade
5.
Beilstein J Org Chem ; 11: 499-503, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977724

RESUMO

Glycogen phosporylase (GP) is a promising target for the control of glycaemia. The design of inhibitors binding at the catalytic site has been accomplished through various families of glucose-based derivatives such as oxadiazoles. Further elaboration of the oxadiazole aromatic aglycon moiety is now reported with 3-glucosyl-5-amino-1,2,4-oxadiazoles synthesized by condensation of a C-glucosyl amidoxime with N,N'-dialkylcarbodiimides or Vilsmeier salts. The 5-amino group introduced on the oxadiazole scaffold was expected to provide better inhibition of GP through potential additional interactions with the enzyme's catalytic site; however, no inhibition was observed at 625 µM.

6.
Chemistry ; 20(18): 5423-32, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24677199

RESUMO

Whereas copper-catalyzed azide-alkyne cycloaddition (CuAAC) between acetylated ß-D-glucosyl azide and alkyl or phenyl acetylenes led to the corresponding 4-substituted 1-glucosyl-1,2,3-triazoles in good yields, use of similar conditions but with 2 equiv CuI or CuBr led to the 5-halogeno analogues (>71 %). In contrast, with 2 equiv CuCl and either propargyl acetate or phenyl acetylene, the major products (>56 %) displayed two 5,5'-linked triazole rings resulting from homocoupling of the 1-glucosyl-4-substituted 1,2,3-triazoles. The 4-phenyl substituted compounds (acetylated, O-unprotected) and the acetylated 4-acetoxymethyl derivative existed in solution as a single form (d.r.>95:5), as shown by NMR spectroscopic analysis. The two 4-phenyl substituted structures were unambiguously identified for the first time by X-ray diffraction analysis, as atropisomers with aR stereochemistry. This represents one of the first efficient and highly atropodiastereoselective approaches to glucose-based bis-triazoles as single atropisomers. The products were purified by standard silica gel chromatography. Through Sonogashira or Suzuki cross-couplings, the 1-glucosyl-5-halogeno-1,2,3-triazoles were efficiently converted into a library of 1,2,3-triazoles of the 1-glucosyl-5-substituted (alkynyl, aryl) type. Attempts to achieve Heck coupling to methyl acrylate failed, but a stable palladium-associated triazole was isolated and analyzed by (1)H NMR and MS. O-Unprotected derivatives were tested as inhibitors of glycogen phosphorylase. The modest inhibition activities measured showed that 4,5-disubstituted 1-glucosyl-1,2,3-triazoles bind weakly to the enzyme. This suggests that such ligands do not fit the catalytic site or any other binding site of the enzyme.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Triazóis/síntese química , Triazóis/farmacologia , Animais , Química Click , Reação de Cicloadição , Inibidores Enzimáticos/química , Glicogênio Fosforilase/metabolismo , Glicosilação , Halogenação , Isomerismo , Modelos Moleculares , Coelhos , Triazóis/química
7.
Chemistry ; 18(20): 6250-63, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22488581

RESUMO

The design of multivalent glycoclusters requires the conjugation of biologically relevant carbohydrate epitopes functionalized with linker arms to multivalent core scaffolds. The multigram-scale syntheses of three structurally modified triethyleneglycol analogues that incorporate amide moiety(ies) and/or a phenyl ring offer convenient access to a series of carbohydrate probes with different water solubilities and rigidities. Evaluation of flexibility and determination of preferred conformations were performed by conformational analysis. Conjugation of the azido-functionalized carbohydrates with tetra-propargylated core scaffolds afforded a library of 18 tetravalent glycoclusters, in high yields, by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The compounds were evaluated for their ability to bind to PA-IL (the LecA lectin from the opportunistic pathogen Pseudomonas aeruginosa). Biochemical evaluation through inhibition of hemagglutination assays (HIA), enzyme-linked lectin assays (ELLA), surface plasmon resonance (SPR), and isothermal titration microcalorimetry (ITC) revealed improved and unprecedented affinities for one of the monovalent probes (K(d)=5.8 µM) and also for a number of the tetravalent compounds that provide several new nanomolar ligands for this tetrameric lectin.


Assuntos
Glicoconjugados/síntese química , Lectinas/química , Modelos Moleculares , Pseudomonas aeruginosa/química , Química Click , Cristalografia por Raios X , Glicoconjugados/química , Testes de Inibição da Hemaglutinação , Lectinas/metabolismo , Ligantes , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Pseudomonas aeruginosa/metabolismo
8.
Bioorg Med Chem ; 20(18): 5592-9, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22910227

RESUMO

Glycogen utilization involves glycogen phosphorylase, an enzyme which appears to be a potential target for the regulation of glycaemia, as the liver isoform is a major player for hepatic glucose output. A single C-glucosylated malonitrile allowed for the synthesis of three glucose-based derivatives namely bis-oxadiazoles, bis-amides and a C-glucosylated tetrahydropyrimidin-2-one. When evaluated as glycogen phosphorylase inhibitors, two of the synthesized compounds displayed inhibition in the sub-millimolar range. In silico studies revealed that only one out of the bis-amides obtained and the C-glucosylated tetrahydropyrimidin-2-one may bind at the catalytic site.


Assuntos
Carboidratos/química , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase Muscular/antagonistas & inibidores , Nitrilas/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Glicogênio Fosforilase Muscular/isolamento & purificação , Glicogênio Fosforilase Muscular/metabolismo , Glicosilação , Modelos Moleculares , Estrutura Molecular , Músculo Esquelético/enzimologia , Nitrilas/síntese química , Nitrilas/química , Coelhos , Relação Estrutura-Atividade
9.
Bioorg Med Chem ; 20(5): 1801-16, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22325154

RESUMO

N-(4-Substituted-benzoyl)-N'-(ß-d-glucopyranosyl) ureas (substituents: Me, Ph, Cl, OH, OMe, NO(2), NH(2), COOH, and COOMe) were synthesised by ZnCl(2) catalysed acylation of O-peracetylated ß-d-glucopyranosyl urea as well as in reactions of O-peracetylated or O-unprotected glucopyranosylamines and acyl-isocyanates. O-deprotections were carried out by base or acid catalysed transesterifications where necessary. Kinetic studies revealed that most of these compounds were low micromolar inhibitors of rabbit muscle glycogen phosphorylase b (RMGPb). The best inhibitor was the 4-methylbenzoyl compound (K(i)=2.3µM). Crystallographic analyses of complexes of several of the compounds with RMGPb showed that the analogues exploited, together with water molecules, the available space at the ß-pocket subsite and induced a more extended shift of the 280s loop compared to RMGPb in complex with the unsubstituted benzoyl urea. The results suggest the key role of the water molecules in ligand binding and structure-based ligand design. Molecular docking study of selected inhibitors was done to show the ability of the binding affinity prediction. The binding affinity of the highest scored docked poses was calculated and correlated with experimentally measured K(i) values. Results show that correlation is high with the R-squared (R(2)) coefficient over 0.9.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicogênio Fosforilase/antagonistas & inibidores , Ureia/análogos & derivados , Animais , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Glicogênio Fosforilase/química , Glicogênio Fosforilase/metabolismo , Glicogênio Fosforilase Muscular/antagonistas & inibidores , Glicogênio Fosforilase Muscular/química , Glicogênio Fosforilase Muscular/metabolismo , Modelos Moleculares , Coelhos , Ureia/síntese química , Ureia/química , Ureia/farmacologia
10.
Chembiochem ; 12(13): 2071-80, 2011 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-21739555

RESUMO

Influenza neuraminidases hydrolyze the ketosidic linkage between N-acetylneuraminic acid and its adjacent galactose residue in sialosides. This enzyme is a tetrameric protein that plays a critical role in the release of progeny virions. Several methods have been described for the determination of neuraminidase activity, usually based on colorimetric, fluorescent, or chemiluminescent detection. However, only a few of these tests allow discrimination of the sialyl-linkage specificity (i.e., α2-3- versus α2-6-linked sialyllactosides) of the neuraminidase. Herein we report a glycoarray-based assay and a MALDI-TOF study for assessing the activity and specificity of two influenza neuraminidases on whole viruses. The human A(H3N2) and avian A(H5N2) neuraminidase activities were investigated. The results from both approaches demonstrated that α2-3 sialyllactoside was a better substrate than α2-6 sialyllactoside for both viruses and that H5N2 virus had a lower hydrolytic activity than H3N2.


Assuntos
Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H5N2/enzimologia , Neuraminidase/metabolismo , Animais , Aves , Humanos , Influenza Aviária/virologia , Influenza Humana/virologia , Análise em Microsséries/métodos , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
11.
Chemistry ; 17(11): 3252-61, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21328503

RESUMO

Multivalency is playing a major role in biological processes and particularly in lectin-carbohydrate interactions. The design of high-affinity ligands of lectins should provide molecules capable of interfering with these biological processes and potentially inhibit bacterial or viral infections. Azide-alkyne "click" chemistry was applied to the synthesis of dodecavalent fullerene-based glycoclusters. The conjugation could be efficiently performed from alkyne or azide functions on either partners (i.e. hexakis-fullerene adduct or glycoside). PA-IL is a bacterial lectin from the opportunistic pathogen Pseudomonas aeruginosa and is involved in the recognition of glycoconjugates on human tissues. The glycoclusters obtained were evaluated as ligands of PA-IL and for their potential for competing with its binding to glycosylated surfaces. The affinities measured by hemagglutination inhibition assay (HIA), enzyme-linked lectin assay (ELLA), and surface plasmon resonance (SPR) displayed a significant "glycoside cluster effect" with up to a 12,000-fold increase in binding when comparing a monovalent carbohydrate reference probe with a dodecavalent fullerene-based glycocluster, albeit with some differences depending on the analytical technique.


Assuntos
Proteínas de Bactérias/metabolismo , Fulerenos/metabolismo , Glicoconjugados/metabolismo , Lectinas/metabolismo , Alcinos/química , Azidas/química , Proteínas de Bactérias/química , Química Click , Ensaios Enzimáticos , Fulerenos/química , Glicoconjugados/química , Testes de Hemaglutinação , Lectinas/química , Ligação Proteica , Pseudomonas aeruginosa/metabolismo , Ressonância de Plasmônio de Superfície
12.
Chemistry ; 17(7): 2146-59, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21294181

RESUMO

The design of multivalent glycoconjugates has been developed over the past decades to obtain high-affinity ligands for lectin receptors. While multivalency frequently increases the affinity of a ligand for its lectin through the so-called "glycoside cluster effect", the binding profiles towards different lectins have been much less investigated. We have designed a series of multivalent galactosylated glycoconjugates and studied their binding properties towards two lectins, from plant and bacterial origins, to determine their potential selectivity. The synthesis was achieved through copper(I)-catalysed azide-alkyne cycloaddition (CuAAC) under microwave activation between propargylated multivalent scaffolds and an azido-functionalised carbohydrate derivative. The interactions of two galactose-binding lectins from Pseudomonas aeruginosa (PA-IL) and Erythrina cristagalli (ECA) with the synthesized glycoclusters were studied by hemagglutination inhibition assays (HIA), surface plasmon resonance (SPR) and isothermal titration microcalorimetry (ITC). The results obtained illustrate the influence of the scaffold's geometry on the affinity towards the lectin and also on the relative potency in comparison with a monovalent galactoside reference probe.


Assuntos
Azidas/química , Proteínas de Bactérias/química , Calixarenos/química , Galectinas/química , Glicoconjugados/química , Lectinas/química , Proteínas de Bactérias/metabolismo , Calorimetria , Galectinas/metabolismo , Ligantes , Modelos Moleculares , Ligação Proteica , Ressonância de Plasmônio de Superfície
13.
Org Biomol Chem ; 9(19): 6587-97, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21837347

RESUMO

Synthetic multivalent glycoclusters show promise as anti-adhesives for the treatment of bacterial infections. Here we report the synthesis of a family of tetravalent galactose and lactose functionalised macrocycles based on the resorcin[4]arene core. The development of diastereoselective synthetic routes for the formation of lower-rim propargylated resorcin[4]arenes and their functionalistion via Cu-catalyzed azide-alkyne click chemistry is described. ELLA binding studies confirm that galactose sugar clusters are effective ligands for the PA-IL bacterial lectin of Pseudomonas aeruginosa while poor binding for the lactose-based monovalent probe and no binding could be measured for the multivalent glycoclusters was observed for the human galectin-1.


Assuntos
Calixarenos/química , Cobre/química , Galactose/síntese química , Lactose/síntese química , Lectinas/química , Fenilalanina/análogos & derivados , Alcinos/química , Azidas/química , Calixarenos/síntese química , Catálise , Técnicas de Química Sintética , Química Click , Cristalografia por Raios X , Galactose/química , Galectina 1/antagonistas & inibidores , Humanos , Lactose/química , Lectinas/farmacologia , Ligantes , Modelos Moleculares , Estrutura Molecular , Fenilalanina/síntese química , Fenilalanina/química , Pseudomonas aeruginosa/química , Estereoisomerismo , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 19(17): 5125-36, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21821421

RESUMO

Electrophilic halogenation of C-(2,3,4,6-tetra-O-acetyl-ß-D-glucopyranosyl) 1,4-dimethoxybenzene (1) afforded regioselectively products halogenated at the para position to the D-glucosyl moiety (8, 9) that were deacetylated to 3 (chloride) and 16 (bromide). For preparing meta regioisomers, 1 was efficiently oxidized with CAN to afford C-(2,3,4,6-tetra-O-acetyl-ß-D-glucopyranosyl) 1,4-benzoquinone 2 which, in either MeOH or H(2)O-THF containing few equivalents of AcCl, added hydrochloric acid to produce predominantly meta (with respect to the sugar moiety) chlorinated hydroquinone derivatives 5 and 18, this latter being deacetylated to 4. The deacetylated meta (4, 5) or para (3, 16) halohydroquinones were evaluated as inhibitors of glycogen phosphorylase (GP, a molecular target for inhibition of hepatic glycogenolysis under high glucose concentrations) by kinetics and X-ray crystallography. These compounds are competitive inhibitors of GPb with respect to α-D-glucose-1-phosphate. The measured IC(50) values (µM) [169.9±10.0 (3), 95 (4), 39.8±0.3 (5) 136.4±4.9 (16)] showed that the meta halogenated inhibitors (4, 5) are more potent than their para analogs (3, 16). The crystal structures of GPb in complex with these compounds at high resolution (1.97-2.05 Å) revealed that the inhibitors are accommodated at the catalytic site and stabilize the T conformation of the enzyme. The differences in their inhibitory potency can be interpreted in terms of variations in the interactions with protein residues of the different substituents on the aromatic part of the inhibitors.


Assuntos
Inibidores Enzimáticos/síntese química , Glicogênio Fosforilase/antagonistas & inibidores , Halogênios/química , Hidroquinonas/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glicogênio Fosforilase/metabolismo , Hidroquinonas/síntese química , Hidroquinonas/metabolismo , Cinética , Conformação Molecular , Ligação Proteica , Estereoisomerismo
15.
Chemistry ; 15(47): 13232-40, 2009 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19859921

RESUMO

A family of seven topologically isomeric calix[4]arene glycoconjugates was prepared through the synthesis of a series of alkyne-derivatised calix[4]arene precursors that are suitable for the attachment of sugar moieties by microwave-assisted copper(I)-catalysed azide-alkyne cycloaddition (CuAAC). The glycoconjugates thus synthesised comprised one mono-functionalised derivative, two 1,2- or 1,3-divalent regioisomers, one trivalent and three tetravalent topoisomers in the cone, partial cone or 1,3-alternate conformations. The designed glycoconjugates were evaluated as ligands for the galactose-binding lectin PA-IL from the opportunistic bacterium Pseudomonas aeruginosa, a major causative agent of lung infections in cystic fibrosis patients. Binding affinities were determined by isothermal titration calorimetry (ITC), and the interaction with the lectin was shown to be strongly dependant on both the valence and the topology. Whereas the trivalent conjugate displayed enhanced affinity when compared to a monosaccharide model, the tetravalent conjugates are to-date the highest-affinity ligands measured by ITC. The topologies presenting carbohydrates on both faces of calixarene are the most potent ones with dissociation constants of approximately 200 nM. Molecular modelling suggests that such a multivalent molecule can efficiently chelate two of the binding sites of the tetrameric lectin; this explains the 800-fold increase of affinity achieved by the tetravalent molecule. Surface plasmon resonance (SPR) experiments confirmed that this glycoconjugate is the strongest inhibitor for binding of PA-IL to galactosylated surfaces for potential applications as an anti-adhesive agent.


Assuntos
Proteínas de Bactérias/química , Calixarenos/química , Calnexina/química , Glicoconjugados/química , Lectinas/química , Fenóis/química , Proteínas de Bactérias/metabolismo , Configuração de Carboidratos , Isomerismo , Ligantes , Modelos Moleculares , Ligação Proteica , Ressonância de Plasmônio de Superfície/métodos
16.
Bioorg Med Chem ; 17(13): 4773-85, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19450985

RESUMO

A series of per-O-benzoylated 5-beta-D-glucopyranosyl-2-substituted-1,3,4-oxadiazoles was prepared by acylation of the corresponding 5-(beta-D-glucopyranosyl)tetrazole. As an alternative, oxidation of 2,6-anhydro-aldose benzoylhydrazones by iodobenzene I,I-diacetate afforded the same oxadiazoles. 1,3-Dipolar cycloaddition of nitrile oxides to per-O-benzoylated beta-D-glucopyranosyl cyanide gave the corresponding 5-beta-D-glucopyranosyl-3-substituted-1,2,4-oxadiazoles. The O-benzoyl protecting groups were removed by base-catalyzed transesterification. The 1,3,4-oxadiazoles were practically inefficient as inhibitors of rabbit muscle glycogen phosphorylase b while the 1,2,4-oxadiazoles displayed inhibitory activities in the micromolar range. The best inhibitors were the 5-beta-D-glucopyranosyl-3-(4-methylphenyl- and -2-naphthyl)-1,2,4-oxadiazoles (K(i)=8.8 and 11.6 microM, respectively). A detailed analysis of the structure-activity relationships is presented.


Assuntos
Glicogênio Fosforilase Muscular/antagonistas & inibidores , Glicogênio Fosforilase Muscular/metabolismo , Oxidiazóis/química , Oxidiazóis/farmacologia , Animais , Glicosilação , Estrutura Molecular , Oxidiazóis/síntese química , Ligação Proteica , Coelhos , Relação Estrutura-Atividade
17.
Bioorg Med Chem ; 17(15): 5696-707, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19574053

RESUMO

Glucopyranosylidene-spiro-1,4,2-oxathiazoles were prepared in high yields by NBS-mediated spiro-cyclization of the corresponding glucosyl-hydroximothioates. In an effort to synthesize analogous glucopyranosylidene-spiro-1,2,4-oxadiazolines, with a nitrogen atom instead of the sulphur, attempted cyclizations resulted in aromatization of the heterocycle with opening of the pyranosyl ring. Enzymatic measurements showed that some of the glucose-based inhibitors were active in the micromolar range. The 2-naphthyl-substituted 1,4,2-oxathiazole displayed the best inhibition against RMGPb (K(i)=160 nM), among glucose-based inhibitors known to date.


Assuntos
Glucose/análogos & derivados , Glicogênio Fosforilase Muscular/antagonistas & inibidores , Glicogênio Fosforilase Muscular/metabolismo , Tiazóis/síntese química , Tiazóis/farmacologia , Animais , Glucose/síntese química , Glucose/química , Glucose/farmacologia , Estrutura Molecular , Coelhos , Relação Estrutura-Atividade , Tiazóis/química
18.
Bioorg Med Chem ; 17(20): 7368-80, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19781947

RESUMO

A series of glucopyranosylidene-spiro-isoxazolines was prepared through regio- and stereoselective [3+2]-cycloaddition between the methylene acetylated exo-glucal and aromatic nitrile oxides. The deprotected cycloadducts were evaluated as inhibitors of muscle glycogen phosphorylase b. The carbohydrate-based family of five inhibitors displays K(i) values ranging from 0.63 to 92.5 microM. The X-ray structures of the enzyme-ligand complexes show that the inhibitors bind preferentially at the catalytic site of the enzyme retaining the less active T-state conformation. Docking calculations with GLIDE in extra-precision (XP) mode yielded excellent agreement with experiment, as judged by comparison of the predicted binding modes of the five ligands with the crystallographic conformations and the good correlation between the docking scores and the experimental free binding energies. Use of docking constraints on the well-defined positions of the glucopyranose moiety in the catalytic site and redocking of GLIDE-XP poses using electrostatic potential fit-determined ligand partial charges in quantum polarized ligand docking (QPLD) produced the best results in this regard.


Assuntos
Inibidores Enzimáticos/farmacologia , Glucose/química , Glicogênio Fosforilase/antagonistas & inibidores , Oxazóis/farmacologia , Cristalografia por Raios X , Inibidores Enzimáticos/química , Glicogênio Fosforilase/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxazóis/química , Espectrometria de Massas por Ionização por Electrospray
20.
Bioorg Med Chem Lett ; 18(17): 4774-8, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18701279

RESUMO

The synthesis of carbohydrate-based glycogen phosphorylase inhibitors is attractive for potential applications in the treatment of type 2 diabetes. A titanium-mediated synthesis led to a benzoylated C-glucosylated cyclopropylamine intermediate, which underwent a benzoyl migration to afford the corresponding 2-hydroxy-C-glycoside. X-ray crystallographic studies revealed a unit cell composed of four molecules as pairs of dimers connected through two hydrogen bonds. The deprotection of the benzoate esters under Zemplén conditions afforded a glycogen phosphorylase inhibitor candidate displaying weak inhibition toward glycogen phosphorylase (16% at 2.5mM).


Assuntos
Benzamidas/síntese química , Benzamidas/farmacologia , Glicogênio Fosforilase Muscular/antagonistas & inibidores , Glicogênio/metabolismo , Animais , Cristalografia por Raios X , Dimerização , Avaliação Pré-Clínica de Medicamentos , Glucosídeos/síntese química , Glucosídeos/farmacologia , Glicogênio Fosforilase Hepática/antagonistas & inibidores , Glicogênio Fosforilase Hepática/metabolismo , Glicogênio Fosforilase Muscular/metabolismo , Glicosilação , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA