Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Blood ; 143(8): 697-712, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38048593

RESUMO

ABSTRACT: Aberrant expression of stem cell-associated genes is a common feature in acute myeloid leukemia (AML) and is linked to leukemic self-renewal and therapy resistance. Using AF10-rearranged leukemia as a prototypical example of the recurrently activated "stemness" network in AML, we screened for chromatin regulators that sustain its expression. We deployed a CRISPR-Cas9 screen with a bespoke domain-focused library and identified several novel chromatin-modifying complexes as regulators of the TALE domain transcription factor MEIS1, a key leukemia stem cell (LSC)-associated gene. CRISPR droplet sequencing revealed that many of these MEIS1 regulators coordinately controlled the transcription of several AML oncogenes. In particular, we identified a novel role for the Tudor-domain-containing chromatin reader protein SGF29 in the transcription of AML oncogenes. Furthermore, SGF29 deletion impaired leukemogenesis in models representative of multiple AML subtypes in multiple AML subtype models. Our studies reveal a novel role for SGF29 as a nononcogenic dependency in AML and identify the SGF29 Tudor domain as an attractive target for drug discovery.


Assuntos
Proteínas de Homeodomínio , Leucemia Mieloide Aguda , Humanos , Proteínas de Homeodomínio/genética , Cromatina/genética , Fatores de Transcrição/genética , Proteína Meis1/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Carcinogênese
2.
Hum Genet ; 141(10): 1595-1613, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34549350

RESUMO

Whole-exome and whole-genome sequencing studies in autism spectrum disorder (ASD) have identified hundreds of thousands of exonic variants. Only a handful of them, primarily loss-of-function variants, have been shown to increase the risk for ASD, while the contributory roles of other variants, including most missense variants, remain unknown. New approaches that combine tissue-specific molecular profiles with patients' genetic data can thus play an important role in elucidating the functional impact of exonic variation and improve understanding of ASD pathogenesis. Here, we integrate spatio-temporal gene co-expression networks from the developing human brain and protein-protein interaction networks to first reach accurate prioritization of ASD risk genes based on their connectivity patterns with previously known high-confidence ASD risk genes. We subsequently integrate these gene scores with variant pathogenicity predictions to further prioritize individual exonic variants based on the positive-unlabeled learning framework with gene- and variant-score calibration. We demonstrate that this approach discriminates among variants between cases and controls at the high end of the prediction range. Finally, we experimentally validate our top-scoring de novo mutation NP_001243143.1:p.Phe309Ser in the sodium/potassium-transporting ATPase ATP1A3 to disrupt protein binding with different partners.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Predisposição Genética para Doença , Humanos , Mutação , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética
3.
Mol Psychiatry ; 26(12): 7560-7580, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34433918

RESUMO

Reciprocal deletion and duplication of the 16p11.2 region is the most common copy number variation (CNV) associated with autism spectrum disorders. We generated cortical organoids from skin fibroblasts of patients with 16p11.2 CNV to investigate impacted neurodevelopmental processes. We show that organoid size recapitulates macrocephaly and microcephaly phenotypes observed in the patients with 16p11.2 deletions and duplications. The CNV dosage affects neuronal maturation, proliferation, and synapse number, in addition to its effect on organoid size. We demonstrate that 16p11.2 CNV alters the ratio of neurons to neural progenitors in organoids during early neurogenesis, with a significant excess of neurons and depletion of neural progenitors observed in deletions. Transcriptomic and proteomic profiling revealed multiple pathways dysregulated by the 16p11.2 CNV, including neuron migration, actin cytoskeleton, ion channel activity, synaptic-related functions, and Wnt signaling. The level of the active form of small GTPase RhoA was increased in both, deletions and duplications. Inhibition of RhoA activity rescued migration deficits, but not neurite outgrowth. This study provides insights into potential neurobiological mechanisms behind the 16p11.2 CNV during neocortical development.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Encéfalo , Deleção Cromossômica , Cromossomos Humanos Par 16/genética , Variações do Número de Cópias de DNA/genética , Humanos , Neurogênese/genética , Organoides , Proteômica
4.
Mol Psychiatry ; 26(7): 3586-3613, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33727673

RESUMO

E3-ubiquitin ligase Cullin3 (Cul3) is a high confidence risk gene for autism spectrum disorder (ASD) and developmental delay (DD). To investigate how Cul3 mutations impact brain development, we generated a haploinsufficient Cul3 mouse model using CRISPR/Cas9 genome engineering. Cul3 mutant mice exhibited social and cognitive deficits and hyperactive behavior. Brain MRI found decreased volume of cortical regions and changes in many other brain regions of Cul3 mutant mice starting from early postnatal development. Spatiotemporal transcriptomic and proteomic profiling of embryonic, early postnatal and adult brain implicated neurogenesis and cytoskeletal defects as key drivers of Cul3 functional impact. Specifically, dendritic growth, filamentous actin puncta, and spontaneous network activity were reduced in Cul3 mutant mice. Inhibition of small GTPase RhoA, a molecular substrate of Cul3 ligase, rescued dendrite length and network activity phenotypes. Our study identified defects in neuronal cytoskeleton and Rho signaling as the primary targets of Cul3 mutation during brain development.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Proteínas Culina/genética , Citoesqueleto , Células Germinativas , Haploinsuficiência/genética , Camundongos , Neurogênese/genética , Proteômica
5.
Circulation ; 142(13): 1279-1293, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32703007

RESUMO

BACKGROUND: Throughout the inflammatory response that accompanies atherosclerosis, autoreactive CD4+ T-helper cells accumulate in the atherosclerotic plaque. Apolipoprotein B100 (apoB), the core protein of low-density lipoprotein, is an autoantigen that drives the generation of pathogenic T-helper type 1 (TH1) cells with proinflammatory cytokine secretion. Clinical data suggest the existence of apoB-specific CD4+ T cells with an atheroprotective, regulatory T cell (Treg) phenotype in healthy individuals. Yet, the function of apoB-reactive Tregs and their relationship with pathogenic TH1 cells remain unknown. METHODS: To interrogate the function of autoreactive CD4+ T cells in atherosclerosis, we used a novel tetramer of major histocompatibility complex II to track T cells reactive to the mouse self-peptide apo B978-993 (apoB+) at the single-cell level. RESULTS: We found that apoB+ T cells build an oligoclonal population in lymph nodes of healthy mice that exhibit a Treg-like transcriptome, although only 21% of all apoB+ T cells expressed the Treg transcription factor FoxP3 (Forkhead Box P3) protein as detected by flow cytometry. In single-cell RNA sequencing, apoB+ T cells formed several clusters with mixed TH signatures that suggested overlapping multilineage phenotypes with pro- and anti-inflammatory transcripts of TH1, T helper cell type 2 (TH2), and T helper cell type 17 (TH17), and of follicular-helper T cells. ApoB+ T cells were increased in mice and humans with atherosclerosis and progressively converted into pathogenic TH1/TH17-like cells with proinflammatory properties and only a residual Treg transcriptome. Plaque T cells that expanded during progression of atherosclerosis consistently showed a mixed TH1/TH17 phenotype in single-cell RNA sequencing. In addition, we observed a loss of FoxP3 in a fraction of apoB+ Tregs in lineage tracing of hyperlipidemic Apoe-/- mice. In adoptive transfer experiments, converting apoB+ Tregs failed to protect from atherosclerosis. CONCLUSIONS: Our results demonstrate an unexpected mixed phenotype of apoB-reactive autoimmune T cells in atherosclerosis and suggest an initially protective autoimmune response against apoB with a progressive derangement in clinical disease. These findings identify apoB autoreactive Tregs as a novel cellular target in atherosclerosis.


Assuntos
Apolipoproteína B-100/imunologia , Aterosclerose/imunologia , Autoimunidade , Linfócitos T Reguladores/imunologia , Animais , Apolipoproteína B-100/genética , Aterosclerose/genética , Camundongos , Camundongos Knockout para ApoE , Linfócitos T Reguladores/patologia
6.
Circ Res ; 125(12): 1038-1051, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31594470

RESUMO

RATIONALE: Macrophages are essential regulators of atherosclerosis. They secrete cytokines, process lipoproteins and cholesterol, and take up apoptotic cells. Multiple subsets of plaque macrophages exist and their differential roles are emerging. OBJECTIVE: Here, we explore macrophage heterogeneity in atherosclerosis plaques using transgenic fluorescent mice in which subsets of macrophages are labeled by GFP (green fluorescent protein), YFP (yellow fluorescent protein), neither, or both. The objective was to define migration patterns of the visible subsets and relate them to their phenotypes and transcriptomes. METHODS AND RESULTS: Apoe-/-Cx3cr1GFPCd11cYFP mice have 4 groups of macrophages in their aortas. The 3 visible subsets show varying movement characteristics. GFP and GFP+YFP+ macrophages extend and retract dendritic processes, dancing on the spot with little net movement while YFP macrophages have a more rounded shape and migrate along the arteries. RNA sequencing of sorted cells revealed significant differences in the gene expression patterns of the 4 subsets defined by GFP and YFP expression, especially concerning chemokine and cytokine expression, matrix remodeling, and cell shape dynamics. Gene set enrichment analysis showed that GFP+ cells have similar transcriptomes to cells found in arteries with tertiary lymphoid organs and regressing plaques while YFP+ cells were associated with progressing and stable plaques. CONCLUSIONS: The combination of quantitative intravital imaging with deep transcriptomes identified 4 subsets of vascular macrophages in atherosclerosis that have unique transcriptomic profiles. Our data link vascular macrophage transcriptomes to their in vivo migratory function. Future work on the functional significance of the change in gene expression and motility characteristics will be needed to fully understand how these subsets contribute to disease progression.


Assuntos
Aterosclerose/patologia , Movimento Celular/fisiologia , Macrófagos/patologia , Macrófagos/fisiologia , Placa Aterosclerótica/patologia , Animais , Aterosclerose/genética , Proteínas de Bactérias/análise , Feminino , Proteínas de Fluorescência Verde/análise , Proteínas Luminescentes/análise , Macrófagos/química , Masculino , Camundongos , Camundongos Transgênicos , Placa Aterosclerótica/genética
7.
Circ Res ; 122(12): 1675-1688, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29545366

RESUMO

RATIONALE: Atherosclerosis is a chronic inflammatory disease that is driven by the interplay of pro- and anti-inflammatory leukocytes in the aorta. Yet, the phenotypic and transcriptional diversity of aortic leukocytes is poorly understood. OBJECTIVE: We characterized leukocytes from healthy and atherosclerotic mouse aortas in-depth by single-cell RNA-sequencing and mass cytometry (cytometry by time of flight) to define an atlas of the immune cell landscape in atherosclerosis. METHODS AND RESULTS: Using single-cell RNA-sequencing of aortic leukocytes from chow diet- and Western diet-fed Apoe-/- and Ldlr-/- mice, we detected 11 principal leukocyte clusters with distinct phenotypic and spatial characteristics while the cellular repertoire in healthy aortas was less diverse. Gene set enrichment analysis on the single-cell level established that multiple pathways, such as for lipid metabolism, proliferation, and cytokine secretion, were confined to particular leukocyte clusters. Leukocyte populations were differentially regulated in atherosclerotic Apoe-/- and Ldlr-/- mice. We confirmed the phenotypic diversity of these clusters with a novel mass cytometry 35-marker panel with metal-labeled antibodies and conventional flow cytometry. Cell populations retrieved by these protein-based approaches were highly correlated to transcriptionally defined clusters. In an integrated screening strategy of single-cell RNA-sequencing, mass cytometry, and fluorescence-activated cell sorting, we detected 3 principal B-cell subsets with alterations in surface markers, functional pathways, and in vitro cytokine secretion. Leukocyte cluster gene signatures revealed leukocyte frequencies in 126 human plaques by a genetic deconvolution strategy. This approach revealed that human carotid plaques and microdissected mouse plaques were mostly populated by macrophages, T-cells, and monocytes. In addition, the frequency of genetically defined leukocyte populations in carotid plaques predicted cardiovascular events in patients. CONCLUSIONS: The definition of leukocyte diversity by high-dimensional analyses enables a fine-grained analysis of aortic leukocyte subsets, reveals new immunologic mechanisms and cell-type-specific pathways, and establishes a functional relevance for lesional leukocytes in human atherosclerosis.


Assuntos
Doenças da Aorta/patologia , Aterosclerose/patologia , Leucócitos/patologia , Análise de Sequência de RNA/métodos , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Linfócitos B/patologia , Citometria de Fluxo/métodos , Humanos , Leucócitos/metabolismo , Macrófagos/patologia , Ilustração Médica , Camundongos , Monócitos/patologia , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Análise de Célula Única/métodos , Linfócitos T/patologia , Transcriptoma
8.
Circ Res ; 122(5): 693-700, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29358227

RESUMO

RATIONALE: The coincidence of inflammation and metabolic derangements in obese adipose tissue has sparked the concept of met-inflammation. Previous observations, however, suggest that inflammatory pathways may not ultimately cause dysmetabolism. OBJECTIVE: We have revisited the relationship between inflammation and metabolism by testing the role of TRAF (tumor necrosis receptor-associated factor)-1, an inhibitory adapter of inflammatory signaling of TNF (tumor necrosis factor)-α, IL (interleukin)-1ß, and TLRs (toll-like receptors). METHODS AND RESULTS: Mice deficient for TRAF-1, which is expressed in obese adipocytes and adipose tissue lymphocytes, caused an expected hyperinflammatory phenotype in adipose tissue with enhanced adipokine and chemokine expression, increased leukocyte accumulation, and potentiated proinflammatory signaling in macrophages and adipocytes in a mouse model of diet-induced obesity. Unexpectedly, TRAF-1-/- mice were protected from metabolic derangements and adipocyte growth, failed to gain weight, and showed improved insulin resistance-an effect caused by increased lipid breakdown in adipocytes and UCP (uncoupling protein)-1-enabled thermogenesis. TRAF-1-dependent catabolic and proinflammatory cues were synergistically driven by ß3-adrenergic and inflammatory signaling and required the presence of both TRAF-1-deficient adipocytes and macrophages. In human obesity, TRAF-1-dependent genes were upregulated. CONCLUSIONS: Enhancing TRAF-1-dependent inflammatory pathways in a gain-of-function approach protected from metabolic derangements in diet-induced obesity. These findings identify TRAF-1 as a regulator of dysmetabolism in mice and humans and question the pathogenic role of chronic inflammation in metabolism.


Assuntos
Metabolismo dos Lipídeos , Obesidade/genética , Fator 1 Associado a Receptor de TNF/genética , Adipócitos/metabolismo , Animais , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo
10.
J Biol Chem ; 289(3): 1825-40, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24293367

RESUMO

Neurotransmitter transporters of the SLC6 family of proteins, including the human serotonin transporter (hSERT), utilize Na(+), Cl(-), and K(+) gradients to induce conformational changes necessary for substrate translocation. Dysregulation of ion movement through monoamine transporters has been shown to impact neuronal firing potentials and could play a role in pathophysiologies, such as depression and anxiety. Despite multiple crystal structures of prokaryotic and eukaryotic SLC transporters indicating the location of both (or one) conserved Na(+)-binding sites (termed Na1 and Na2), much remains uncertain in regard to the movements and contributions of these cation-binding sites in the transport process. In this study, we utilize the unique properties of a mutation of hSERT at a single, highly conserved asparagine on TM1 (Asn-101) to provide several lines of evidence demonstrating mechanistically distinct roles for Na1 and Na2. Mutations at Asn-101 alter the cation dependence of the transporter, allowing Ca(2+) (but not other cations) to functionally replace Na(+) for driving transport and promoting 5-hydroxytryptamine (5-HT)-dependent conformational changes. Furthermore, in two-electrode voltage clamp studies in Xenopus oocytes, both Ca(2+) and Na(+) illicit 5-HT-induced currents in the Asn-101 mutants and reveal that, although Ca(2+) promotes substrate-induced current, it does not appear to be the charge carrier during 5-HT transport. These findings, in addition to functional evaluation of Na1 and Na2 site mutants, reveal separate roles for Na1 and Na2 and provide insight into initiation of the translocation process as well as a mechanism whereby the reported SERT stoichiometry can be obtained despite the presence of two putative Na(+)-binding sites.


Assuntos
Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Sódio/metabolismo , Substituição de Aminoácidos , Asparagina/genética , Asparagina/metabolismo , Sítios de Ligação , Transporte Biológico Ativo/fisiologia , Dopamina/genética , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
11.
J Biol Chem ; 289(43): 29712-27, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25179220

RESUMO

The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3ß-(p-chlorophenyl)tropane-2ß-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([(125)I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [(125)I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors.


Assuntos
Azidas/metabolismo , Cocaína/análogos & derivados , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Simulação de Acoplamento Molecular , Animais , Azidas/química , Sítios de Ligação , Cocaína/química , Cocaína/metabolismo , Brometo de Cianogênio/metabolismo , Células HeLa , Humanos , Células LLC-PK1 , Ligantes , Mesilatos/metabolismo , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ratos , Especificidade por Substrato , Suínos
12.
Cell Rep ; 36(9): 109631, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469739

RESUMO

Alternative splicing plays an important role in brain development, but its global contribution to human neurodevelopmental diseases (NDDs) requires further investigation. Here we examine the relationships between splicing isoform expression in the brain and de novo loss-of-function mutations from individuals with NDDs. We analyze the full-length isoform transcriptome of the developing human brain and observe differentially expressed isoforms and isoform co-expression modules undetectable by gene-level analyses. These isoforms are enriched in loss-of-function mutations and microexons, are co-expressed with a unique set of partners, and have higher prenatal expression. We experimentally test the effect of splice-site mutations and demonstrate exon skipping in five NDD risk genes, including SCN2A, DYRK1A, and BTRC. Our results suggest that the splice site mutation in BTRC reduces translational efficiency, likely affecting Wnt signaling through impaired degradation of ß-catenin. We propose that functional effects of mutations should be investigated at the isoform- rather than gene-level resolution.


Assuntos
Processamento Alternativo , Transtorno Autístico/genética , Encéfalo/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Mutação , Transcriptoma , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Estudos de Casos e Controles , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Células HeLa , Humanos , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Contendo Repetições de beta-Transducina/genética , Quinases Dyrk
13.
Cardiovasc Res ; 117(4): 1166-1177, 2021 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-32658258

RESUMO

AIMS: During virally suppressed chronic HIV infection, persistent inflammation contributes to the development of cardiovascular disease (CVD), a major comorbidity in people living with HIV (LWH). Classical blood monocytes (CMs) remain activated during antiretroviral therapy and are a major source of pro-inflammatory and pro-thrombotic factors that contribute to atherosclerotic plaque development and instability. METHODS AND RESULTS: Here, we identify transcriptomic changes in circulating CMs in peripheral blood mononuclear cell samples from participants of the Women's Interagency HIV Study, selected by HIV and subclinical CVD (sCVD) status. We flow-sorted CM from participants of the Women's Interagency HIV Study and deep-sequenced their mRNA (n = 92). CMs of HIV+ participants showed elevated interleukin (IL)-6, IL-1ß, and IL-12ß, overlapping with many transcripts identified in sCVD+ participants. In sCVD+ participants LWH, those reporting statin use showed reduced pro-inflammatory gene expression to a level comparable with healthy (HIV-sCVD-) participants. Statin non-users maintained an elevated inflammatory profile and increased cytokine production. CONCLUSION: Statin therapy has been associated with a lower risk of cardiac events, such as myocardial infarction in the general population, but not in those LWH. Our data suggest that women LWH may benefit from statin therapy even in the absence of overt CVD.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Infecções por HIV/imunologia , Sobreviventes de Longo Prazo ao HIV , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inflamação/prevenção & controle , Monócitos/efeitos dos fármacos , Transcriptoma , Adulto , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/virologia , Estudos de Casos e Controles , Citocinas/genética , Citocinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Infecções por HIV/genética , Infecções por HIV/virologia , Fatores de Risco de Doenças Cardíacas , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/virologia , Mediadores da Inflamação/metabolismo , Estudos Longitudinais , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , Medição de Risco , Fatores Sexuais , Estados Unidos
15.
Front Immunol ; 10: 1084, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178859

RESUMO

Macrophages are found in tissues, body cavities, and mucosal surfaces. Most tissue macrophages are seeded in the early embryo before definitive hematopoiesis is established. Others are derived from blood monocytes. The macrophage lineage diversification and plasticity are key aspects of their functionality. Macrophages can also be generated from monocytes in vitro and undergo classical (LPS+IFN-γ) or alternative (IL-4) activation. In vivo, macrophages with different polarization and different activation markers coexist in tissues. Certain mouse strains preferentially promote T-helper-1 (Th1) responses and others Th2 responses. Their macrophages preferentially induce iNOS or arginase and have been called M1 and M2, respectively. In many publications, M1 and classically activated and M2 and alternatively activated are used interchangeably. We tested whether this is justified by comparing the gene lists positively [M1(=LPS+)] or negatively [M2(=LPS-)] correlated with the ratio of IL-12 and arginase 1 in transcriptomes of LPS-treated peritoneal macrophages with in vitro classically (LPS, IFN-γ) vs. alternatively activated (IL-4) bone marrow derived macrophages, both from published datasets. Although there is some overlap between in vivo M1(=LPS+) and in vitro classically activated (LPS+IFN-γ) and in vivo M2(=LPS-) and in vitro alternatively activated macrophages, many more genes are regulated in opposite or unrelated ways. Thus, M1(=LPS+) macrophages are not equivalent to classically activated, and M2(=LPS-) macrophages are not equivalent to alternatively activated macrophages. This fundamental discrepancy explains why most surface markers identified on in vitro generated macrophages do not translate to the in vivo situation. Valid in vivo M1/M2 surface markers remain to be discovered.


Assuntos
Macrófagos/fisiologia , Animais , Arginina/metabolismo , Movimento Celular , Polaridade Celular , Quimiotaxia , Humanos , Metabolismo dos Lipídeos , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/fisiologia , Camundongos , Processamento de Proteína Pós-Traducional , Transdução de Sinais
16.
Neurochem Int ; 123: 34-45, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30125594

RESUMO

The dopamine transporter (DAT) is a neuronal membrane protein that is responsible for reuptake of dopamine (DA) from the synapse and functions as a major determinant in control of DA neurotransmission. Cocaine and many psychostimulant drugs bind to DAT and block reuptake, inducing DA overflow that forms the neurochemical basis for euphoria and addiction. Paradoxically, however, some ligands such as benztropine (BZT) bind to DAT and inhibit reuptake but do not produce these effects, and it has been hypothesized that differential mechanisms of binding may stabilize specific transporter conformations that affect downstream neurochemical or behavioral outcomes. To investigate the binding mechanisms of BZT on DAT we used the photoaffinity BZT analog [125I]N-[n-butyl-4-(4‴-azido-3‴-iodophenyl)]-4',4″-difluoro-3α-(diphenylmethoxy)tropane ([125I]GA II 34) to identify the site of cross-linking and predict the binding pose relative to that of previously-examined cocaine photoaffinity analogs. Biochemical findings show that adduction of [125I]GA II 34 occurs at residues Asp79 or Leu80 in TM1, with molecular modeling supporting adduction to Leu80 and a pharmacophore pose in the central S1 site similar to that of cocaine and cocaine analogs. Substituted cysteine accessibility method protection analyses verified these findings, but identified some differences in structural stabilization relative to cocaine that may relate to BZT neurochemical outcomes.


Assuntos
Benzotropina/farmacologia , Sítios de Ligação/efeitos dos fármacos , Cocaína/farmacologia , Dopamina/metabolismo , Relação Estrutura-Atividade , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Humanos , Radioisótopos do Iodo/farmacologia
17.
Cell Rep ; 21(13): 3885-3899, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281835

RESUMO

The adaptive immune response involves T cell differentiation and migration to sites of inflammation. T cell trafficking is initiated by rolling on inflamed endothelium. Tethers and slings, discovered in neutrophils, facilitate cell rolling at high shear stress. Here, we demonstrate that the ability to form tethers and slings during rolling is highly inducible in T helper 1 (Th1), Th17, and regulatory T (Treg) cells but less in Th2 cells. In vivo, endogenous Treg cells rolled stably in cremaster venules at physiological shear stress. Quantitative dynamic footprinting nanoscopy of Th1, Th17, and Treg cells uncovered the formation of multiple tethers per cell. Human Th1 cells also showed tethers and slings. RNA sequencing (RNA-seq) revealed the induction of cell migration and cytoskeletal genes in sling-forming cells. We conclude that differentiated CD4 T cells stabilize rolling by inducible tether and sling formation. These phenotypic changes approximate the adhesion phenotype of neutrophils and support CD4 T cell access to sites of inflammation.


Assuntos
Estresse Mecânico , Linfócitos T Reguladores/patologia , Animais , Diferenciação Celular , Movimento Celular/genética , Citoesqueleto/metabolismo , Selectina E/metabolismo , Humanos , Contagem de Linfócitos , Camundongos Endogâmicos C57BL , Microvilosidades/metabolismo , Neutrófilos/metabolismo , Selectina-P/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th1/metabolismo , Transcriptoma/genética
18.
Nat Commun ; 8: 16041, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28737175

RESUMO

Although mouse models exist for many immune-based diseases, the clinical translation remains challenging. Most basic and translational studies utilize only a single inbred mouse strain. However, basal and diseased immune states in humans show vast inter-individual variability. Here, focusing on macrophage responses to lipopolysaccharide (LPS), we use the hybrid mouse diversity panel (HMDP) of 83 inbred strains as a surrogate for human natural immune variation. Since conventional bioinformatics fail to analyse a population spectrum, we highlight how gene signatures for LPS responsiveness can be derived based on an Interleukin-12ß and arginase expression ratio. Compared to published signatures, these gene markers are more robust to identify susceptibility or resilience to several macrophage-related disorders in humans, including survival prediction across many tumours. This study highlights natural activation diversity as a disease-relevant dimension in macrophage biology, and suggests the HMDP as a viable tool to increase translatability of mouse data to clinical settings.


Assuntos
Variação Genética , Ativação de Macrófagos/genética , Modelos Animais , Animais , Predisposição Genética para Doença , Humanos , Imunidade Inata/genética , Inflamação , Lipopolissacarídeos , Masculino , Camundongos , Neoplasias/imunologia , Neoplasias/mortalidade , Fenótipo
19.
Biochem Pharmacol ; 142: 204-215, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28734777

RESUMO

Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2ß position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2-24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2-24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2-24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (-)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.


Assuntos
Cocaína/análogos & derivados , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Tropanos/metabolismo , Animais , Azidas/química , Azidas/metabolismo , Sítios de Ligação , Cocaína/química , Cocaína/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Radioisótopos do Iodo , Células LLC-PK1 , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mapeamento de Peptídeos , Marcadores de Fotoafinidade , Ligação Proteica , Relação Estrutura-Atividade , Transtornos Relacionados ao Uso de Substâncias/psicologia , Suínos , Tropanos/química
20.
Front Immunol ; 7: 204, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27313577

RESUMO

Macrophages are central to both innate and adaptive immunity. With few exceptions, macrophages are the first cells that sense trouble and respond to disturbances in almost all tissues and organs. They sense their environment, inhibit or kill pathogens, take up apoptotic and necrotic cells, heal tissue damage, and present antigens to T cells. Although the origins (yolk sac versus monocyte-derived) and phenotypes (functions, gene expression profiles, surface markers) of macrophages vary between tissues, they have many receptors in common that are specific to one or a few molecular species. Here, we review the expression and function of almost 200 key macrophage receptors that help the macrophages sense what is going on, including pathogen-derived molecules, the state of the surrounding tissue cells, apoptotic and necrotic cell death, antibodies and immune complexes, altered self molecules, extracellular matrix components, and cytokines, including chemokines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA