RESUMO
Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches are beginning to be integrated into drug development and approval processes because they enable key pharmacokinetic (PK) parameters to be predicted from in vitro data. However, these approaches are hampered by many limitations, including an inability to incorporate organ-specific differentials in drug clearance, distribution, and absorption that result from differences in cell uptake, transport, and metabolism. Moreover, such approaches are generally unable to provide insight into pharmacodynamic (PD) parameters. Recent development of microfluidic Organ-on-a-Chip (Organ Chip) cell culture devices that recapitulate tissue-tissue interfaces, vascular perfusion, and organ-level functionality offer the ability to overcome these limitations when multiple Organ Chips are linked via their endothelium-lined vascular channels. Here, we discuss successes and challenges in the use of existing culture models and vascularized Organ Chips for PBPK and PD modeling of human drug responses, as well as in vitro to in vivo extrapolation (IVIVE) of these results, and how these approaches might advance drug development and regulatory review processes in the future.
Assuntos
Desenvolvimento de Medicamentos/métodos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Simulação por Computador , Aprovação de Drogas/métodos , Humanos , Dispositivos Lab-On-A-Chip , Modelos Biológicos , FarmacocinéticaRESUMO
Mechanical breathing motions have a fundamental function in lung development and disease, but little is known about how they contribute to host innate immunity. Here we use a human lung alveolus chip that experiences cyclic breathing-like deformations to investigate whether physical forces influence innate immune responses to viral infection. Influenza H3N2 infection of mechanically active chips induces a cascade of host responses including increased lung permeability, apoptosis, cell regeneration, cytokines production, and recruitment of circulating immune cells. Comparison with static chips reveals that breathing motions suppress viral replication by activating protective innate immune responses in epithelial and endothelial cells, which are mediated in part through activation of the mechanosensitive ion channel TRPV4 and signaling via receptor for advanced glycation end products (RAGE). RAGE inhibitors suppress cytokines induction, while TRPV4 inhibition attenuates both inflammation and viral burden, in infected chips with breathing motions. Therefore, TRPV4 and RAGE may serve as new targets for therapeutic intervention in patients infected with influenza and other potential pandemic viruses that cause life-threatening lung inflammation.
Assuntos
Antígenos de Neoplasias , Imunidade Inata , Influenza Humana , Proteínas Quinases Ativadas por Mitógeno , Canais de Cátion TRPV , Antígenos de Neoplasias/metabolismo , Citocinas , Células Endoteliais , Humanos , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/imunologia , Pulmão , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Canais de Cátion TRPV/metabolismoRESUMO
BACKGROUND: Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), which results in impaired airway mucociliary clearance, inflammation, infection, and respiratory insufficiency. The development of new therapeutics for CF are limited by the lack of reliable preclinical models that recapitulate the structural, immunological, and bioelectrical features of human CF lungs. METHODS: We leveraged organ-on-a-chip technology to develop a microfluidic device lined by primary human CF bronchial epithelial cells grown under an air-liquid interface and interfaced with pulmonary microvascular endothelial cells (CF Airway Chip) exposed to fluid flow. The responses of CF and healthy Airway Chips were analyzed in the presence or absence of polymorphonuclear leukocytes (PMNs) and the bacterial pathogen, Pseudomonas aeruginosa. RESULTS: The CF Airway Chip faithfully recapitulated many features of the human CF airways, including enhanced mucus accumulation, increased cilia density, and a higher ciliary beating frequency compared to chips lined by healthy bronchial epithelial cells. The CF chips also secreted higher levels of IL-8, which was accompanied by enhanced PMN adhesion to the endothelium and transmigration into the airway compartment. In addition, CF Airway Chips provided a more favorable environment for Pseudomonas aeruginosa growth, which resulted in enhanced secretion of inflammatory cytokines and recruitment of PMNs to the airway. CONCLUSIONS: The human CF Airway Chip may provide a valuable preclinical tool for pathophysiology studies as well as for drug testing and personalized medicine.
Assuntos
Fibrose Cística , Células Cultivadas , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Endoteliais , Humanos , Dispositivos Lab-On-A-Chip , Pulmão , Pseudomonas aeruginosa/fisiologiaRESUMO
In vitro models of human organs must accurately reconstitute oxygen concentrations and gradients that are observed in vivo to mimic gene expression, metabolism, and host-microbiome interactions. Here we describe a simple strategy to achieve physiologically relevant oxygen tension in a two-channel human small intestine-on-a-chip (Intestine Chip) lined with primary human duodenal epithelium and intestinal microvascular endothelium in parallel channels separated by a porous membrane while both channels are perfused with oxygenated medium. This strategy was developed using computer simulations that predicted lowering the oxygen permeability of poly-dimethylsiloxane (PDMS) chips in specified locations using a gas impermeable film will allow the cells to naturally decrease the oxygen concentration through aerobic respiration and reach steady-state oxygen levels <36 mm Hg (<5%) within the epithelial lumen. The approach was experimentally confirmed using chips with embedded oxygen sensors that maintained this stable oxygen gradient. Furthermore, Intestine Chips cultured with this approach supported formation of a villus epithelium interfaced with a continuous endothelium and maintained intestinal barrier integrity for 72 h. This strategy recapitulates in vivo functionality in an efficient, inexpensive, and scalable format that improves the robustness and translatability of Organ Chip technology for studies on microbiome as well as oxygen sensitivity.
Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Humanos , Mucosa Intestinal , Oxigênio , PorosidadeRESUMO
BACKGROUND: A dominance of non-iners Lactobacillus species in the vaginal microbiome is optimal and strongly associated with gynecological and obstetric health, while the presence of diverse obligate or facultative anaerobic bacteria and a paucity in Lactobacillus species, similar to communities found in bacterial vaginosis (BV), is considered non-optimal and associated with adverse health outcomes. Various therapeutic strategies are being explored to modulate the composition of the vaginal microbiome; however, there is no human model that faithfully reproduces the vaginal epithelial microenvironment for preclinical validation of potential therapeutics or testing hypotheses about vaginal epithelium-microbiome interactions. RESULTS: Here, we describe an organ-on-a-chip (organ chip) microfluidic culture model of the human vaginal mucosa (vagina chip) that is lined by hormone-sensitive, primary vaginal epithelium interfaced with underlying stromal fibroblasts, which sustains a low physiological oxygen concentration in the epithelial lumen. We show that the Vagina Chip can be used to assess colonization by optimal L. crispatus consortia as well as non-optimal Gardnerella vaginalis-containing consortia, and to measure associated host innate immune responses. Co-culture and growth of the L. crispatus consortia on-chip was accompanied by maintenance of epithelial cell viability, accumulation of D- and L-lactic acid, maintenance of a physiologically relevant low pH, and down regulation of proinflammatory cytokines. In contrast, co-culture of G. vaginalis-containing consortia in the vagina chip resulted in epithelial cell injury, a rise in pH, and upregulation of proinflammatory cytokines. CONCLUSION: This study demonstrates the potential of applying human organ chip technology to create a preclinical model of the human vaginal mucosa that can be used to better understand interactions between the vaginal microbiome and host tissues, as well as to evaluate the safety and efficacy of live biotherapeutics products. Video Abstract.
Assuntos
Microbiota , Vaginose Bacteriana , Feminino , Gravidez , Humanos , Dispositivos Lab-On-A-Chip , Vagina , CitocinasRESUMO
Drug-induced cytopenias are a prevalent and significant issue that worsens clinical outcomes and hinders the effective treatment of cancer. While reductions in blood cell numbers are classically associated with traditional cytotoxic chemotherapies, they also occur with newer targeted small molecules and the factors that determine the hematotoxicity profiles of oncologic drugs are not fully understood. Here, we explore why some Aurora kinase inhibitors cause preferential neutropenia. By studying drug responses of healthy human hematopoietic cells in vitro and analyzing existing gene expression datasets, we provide evidence that the enhanced vulnerability of neutrophil-lineage cells to Aurora kinase inhibition is caused by early developmental changes in ATP-binding cassette (ABC) transporter expression. These data show that hematopoietic cell-intrinsic expression of ABC transporters may be an important factor that determines how some Aurora kinase inhibitors affect the bone marrow.
Assuntos
Transportadores de Cassetes de Ligação de ATP , Neutrófilos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Aurora Quinases/metabolismo , Hematopoese/genética , Humanos , Proteínas de Neoplasias/metabolismo , Neutrófilos/metabolismo , Inibidores de Proteínas Quinases/farmacologiaRESUMO
The current coronavirus disease 2019 (COVID-19) pandemic highlights the need for broad-spectrum antiviral therapeutics. Here we describe a new class of self-assembling immunostimulatory short duplex RNAs that potently induce production of type I and type III interferon (IFN-I and IFN-III). These RNAs require a minimum of 20 base pairs, lack any sequence or structural characteristics of known immunostimulatory RNAs, and instead require a unique sequence motif (sense strand, 5'-C; antisense strand, 3'-GGG) that mediates end-to-end dimer self-assembly. The presence of terminal hydroxyl or monophosphate groups, blunt or overhanging ends, or terminal RNA or DNA bases did not affect their ability to induce IFN. Unlike previously described immunostimulatory small interfering RNAs (siRNAs), their activity is independent of Toll-like receptor (TLR) 7/8, but requires the RIG-I/IRF3 pathway that induces a more restricted antiviral response with a lower proinflammatory signature compared with immunostimulant poly(I:C). Immune stimulation mediated by these duplex RNAs results in broad-spectrum inhibition of infections by many respiratory viruses with pandemic potential, including severe acute respiratory syndrome coronavirus (SARS-CoV)-2, SARS-CoV, Middle East respiratory syndrome coronavirus (MERS-CoV), human coronavirus (HCoV)-NL63, and influenza A virus in cell lines, human lung chips that mimic organ-level lung pathophysiology, and a mouse SARS-CoV-2 infection model. These short double-stranded RNAs (dsRNAs) can be manufactured easily, and thus potentially could be harnessed to produce broad-spectrum antiviral therapeutics.
RESUMO
Environmental enteric dysfunction (EED)-a chronic inflammatory condition of the intestine-is characterized by villus blunting, compromised intestinal barrier function and reduced nutrient absorption. Here we show that essential genotypic and phenotypic features of EED-associated intestinal injury can be reconstituted in a human intestine-on-a-chip lined by organoid-derived intestinal epithelial cells from patients with EED and cultured in nutrient-deficient medium lacking niacinamide and tryptophan. Exposure of the organ chip to such nutritional deficiencies resulted in congruent changes in six of the top ten upregulated genes that were comparable to changes seen in samples from patients with EED. Chips lined with healthy epithelium or with EED epithelium exposed to nutritional deficiencies resulted in severe villus blunting and barrier dysfunction, and in the impairment of fatty acid uptake and amino acid transport; and the chips with EED epithelium exhibited heightened secretion of inflammatory cytokines. The organ-chip model of EED-associated intestinal injury may facilitate the analysis of the molecular, genetic and nutritional bases of the disease and the testing of candidate therapeutics for it.
Assuntos
Enteropatias , Desnutrição , Humanos , Dispositivos Lab-On-A-Chip , Intestinos , Intestino Delgado/metabolismo , Desnutrição/metabolismoRESUMO
Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device. Superfusion via a parallel channel separated by a microporous membrane is required for LF formation and prevents lymphocyte autoactivation. These germinal center-like LFs contain B cells expressing Activation-Induced Cytidine Deaminase and exhibit plasma cell differentiation upon activation. To explore their utility for seasonal vaccine testing, autologous monocyte-derived dendritic cells are integrated into LF Chips. The human LF chips demonstrate improved antibody responses to split virion influenza vaccination compared to 2D cultures, which are enhanced by a squalene-in-water emulsion adjuvant, and this is accompanied by increases in LF size and number. When inoculated with commercial influenza vaccine, plasma cell formation and production of anti-hemagglutinin IgG are observed, as well as secretion of cytokines similar to vaccinated humans over clinically relevant timescales.
Assuntos
Vacinas contra Influenza , Influenza Humana , Estruturas Linfoides Terciárias , Animais , Anticorpos Antivirais , Humanos , Influenza Humana/prevenção & controle , Dispositivos Lab-On-A-Chip , Estações do Ano , VacinaçãoRESUMO
Microfluidic organ-on-a-chip (Organ Chip) cell culture devices are often fabricated using polydimethylsiloxane (PDMS) because it is biocompatible, transparent, elastomeric, and oxygen permeable; however, hydrophobic small molecules can absorb to PDMS, which makes it challenging to predict drug responses. Here, we describe a combined simulation and experimental approach to predict the spatial and temporal concentration profile of a drug under continuous dosing in a PDMS Organ Chip containing two parallel channels separated by a porous membrane that is lined with cultured cells, without prior knowledge of its log P value. First, a three-dimensional finite element model of drug loss into the chip was developed that incorporates absorption, adsorption, convection, and diffusion, which simulates changes in drug levels over time and space as a function of potential PDMS diffusion coefficients and log P values. By then experimentally measuring the diffusivity of the compound in PDMS and determining its partition coefficient through mass spectrometric analysis of the drug concentration in the channel outflow, it is possible to estimate the effective log P range of the compound. The diffusion and partition coefficients were experimentally derived for the antimalarial drug and potential SARS-CoV-2 therapeutic, amodiaquine, and incorporated into the model to quantitatively estimate the drug-specific concentration profile over time measured in human lung airway chips lined with bronchial epithelium interfaced with pulmonary microvascular endothelium. The same strategy can be applied to any device geometry, surface treatment, or in vitro microfluidic model to simulate the spatial and temporal gradient of a drug in 3D without prior knowledge of the partition coefficient or the rate of diffusion in PDMS. Thus, this approach may expand the use of PDMS Organ Chip devices for various forms of drug testing.
Assuntos
COVID-19 , Preparações Farmacêuticas , Dimetilpolisiloxanos , Humanos , Microfluídica , SARS-CoV-2RESUMO
Human-to-human transmission of viruses, such as influenza viruses and coronaviruses, can promote virus evolution and the emergence of new strains with increased potential for creating pandemics. Clinical studies analyzing how a particular type of virus progressively evolves new traits, such as resistance to antiviral therapies, as a result of passing between different human hosts are difficult to carry out because of the complexity, scale, and cost of the challenge. Here, we demonstrate that spontaneous evolution of influenza A virus through both mutation and gene reassortment can be reconstituted in vitro by sequentially passaging infected mucus droplets between multiple human lung airway-on-a-chip microfluidic culture devices (airway chips). Modeling human-to-human transmission of influenza virus infection on chips in the continued presence of the antiviral drugs amantadine or oseltamivir led to the spontaneous emergence of clinically prevalent resistance mutations, and strains that were resistant to both drugs were identified when they were administered in combination. In contrast, we found that nafamostat, an inhibitor targeting host serine proteases, did not induce viral resistance. This human preclinical model may be useful for studying viral evolution in vitro and identifying potential influenza virus variants before they appear in human populations, thereby enabling preemptive design of new and more effective vaccines and therapeutics. IMPORTANCE The rapid evolution of viruses, such as influenza viruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is challenging the use and development of antivirals and vaccines. Studies of within-host viral evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape viral global evolution as well as development of better antivirals and vaccines. However, little is known about how viral evolution of resistance to antivirals occurs clinically due to the lack of preclinical models that can faithfully model influenza infection in humans. Our study shows that influenza viral evolution through mutation or gene reassortment can be recapitulated in a human lung airway-on-a-chip (airway chip) microfluidic culture device that can faithfully recapitulate the influenza infection in vitro. This approach is useful for studying within-host viral evolution, evaluating viral drug resistance, and identifying potential influenza virus variants before they appear in human populations, thereby enabling the preemptive design of new and more effective vaccines and therapeutics.
Assuntos
Farmacorresistência Viral/genética , Evolução Molecular , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Dispositivos Lab-On-A-Chip , Amantadina/farmacologia , Antivirais/farmacologia , Benzamidinas/farmacologia , Guanidinas/farmacologia , Humanos , Influenza Humana/tratamento farmacológico , Influenza Humana/transmissão , Pulmão/virologia , Microfluídica , Oseltamivir/farmacologia , SARS-CoV-2/genéticaRESUMO
The current COVID-19 pandemic highlights the need for broad-spectrum antiviral therapeutics. Here we describe a new class of self-assembling immunostimulatory short duplex RNAs that potently induce production of type I and type III interferon (IFN-I and IFN-III), in a wide range of human cell types. These RNAs require a minimum of 20 base pairs, lack any sequence or structural characteristics of known immunostimulatory RNAs, and instead require a unique conserved sequence motif (sense strand: 5'-C, antisense strand: 3'-GGG) that mediates end-to-end dimer self-assembly of these RNAs by Hoogsteen G-G base-pairing. The presence of terminal hydroxyl or monophosphate groups, blunt or overhanging ends, or terminal RNA or DNA bases did not affect their ability to induce IFN. Unlike previously described immunostimulatory siRNAs, their activity is independent of TLR7/8, but requires the RIG-I/IRF3 pathway that induces a more restricted antiviral response with a lower proinflammatory signature compared with poly(I:C). Immune stimulation mediated by these duplex RNAs results in broad spectrum inhibition of infections by many respiratory viruses with pandemic potential, including SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza A, as well as the common cold virus HCoV-NL63 in both cell lines and human Lung Chips that mimic organ-level lung pathophysiology. These short dsRNAs can be manufactured easily, and thus potentially could be harnessed to produce broad-spectrum antiviral therapeutics at low cost.
RESUMO
Many patients infected with coronaviruses, such as SARS-CoV-2 and NL63 that use ACE2 receptors to infect cells, exhibit gastrointestinal symptoms and viral proteins are found in the human gastrointestinal tract, yet little is known about the inflammatory and pathological effects of coronavirus infection on the human intestine. Here, we used a human intestine-on-a-chip (Intestine Chip) microfluidic culture device lined by patient organoid-derived intestinal epithelium interfaced with human vascular endothelium to study host cellular and inflammatory responses to infection with NL63 coronavirus. These organoid-derived intestinal epithelial cells dramatically increased their ACE2 protein levels when cultured under flow in the presence of peristalsis-like mechanical deformations in the Intestine Chips compared to when cultured statically as organoids or in Transwell inserts. Infection of the intestinal epithelium with NL63 on-chip led to inflammation of the endothelium as demonstrated by loss of barrier function, increased cytokine production, and recruitment of circulating peripheral blood mononuclear cells (PBMCs). Treatment of NL63 infected chips with the approved protease inhibitor drug, nafamostat, inhibited viral entry and resulted in a reduction in both viral load and cytokine secretion, whereas remdesivir, one of the few drugs approved for COVID19 patients, was not found to be effective and it also was toxic to the endothelium. This model of intestinal infection was also used to test the effects of other drugs that have been proposed for potential repurposing against SARS-CoV-2. Taken together, these data suggest that the human Intestine Chip might be useful as a human preclinical model for studying coronavirus related pathology as well as for testing of potential anti-viral or anti-inflammatory therapeutics.
RESUMO
The rapid repurposing of antivirals is particularly pressing during pandemics. However, rapid assays for assessing candidate drugs typically involve in vitro screens and cell lines that do not recapitulate human physiology at the tissue and organ levels. Here we show that a microfluidic bronchial-airway-on-a-chip lined by highly differentiated human bronchial-airway epithelium and pulmonary endothelium can model viral infection, strain-dependent virulence, cytokine production and the recruitment of circulating immune cells. In airway chips infected with influenza A, the co-administration of nafamostat with oseltamivir doubled the treatment-time window for oseltamivir. In chips infected with pseudotyped severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant doses of the antimalarial drug amodiaquine inhibited infection but clinical doses of hydroxychloroquine and other antiviral drugs that inhibit the entry of pseudotyped SARS-CoV-2 in cell lines under static conditions did not. We also show that amodiaquine showed substantial prophylactic and therapeutic activities in hamsters challenged with native SARS-CoV-2. The human airway-on-a-chip may accelerate the identification of therapeutics and prophylactics with repurposing potential.
Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Teste para COVID-19/métodos , Dispositivos Lab-On-A-Chip , Animais , COVID-19/diagnóstico , COVID-19/virologia , Linhagem Celular , Cricetinae , Feminino , Proteínas de Fluorescência Verde , Humanos , Masculino , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacosRESUMO
Birth trauma and pelvic injury have been implicated in the etiology of stress urinary incontinence (SUI). This study aimed to assess changes in the biomechanical properties and adrenergic-evoked contractile responses of the rat urethra after simulated birth trauma induced by vaginal distension (VD). Urethras were isolated 4 days after VD and evaluated in our established ex vivo urethral testing system that utilized a laser micrometer to measure the urethral outer diameter at proximal, middle, and distal positions. Segments were precontracted with phenylephrine (PE) and then exposed to intralumenal static pressures ranging from 0 to 20 mmHg to measure urethral compliance. After active assessment, the urethra was rendered passive with EDTA and assessed. Pressure and diameter measurements were recorded via computer. Urethral thickness was measured histologically to calculate circumferential stress-strain response and functional contraction ratio (FCR), a measure of smooth muscle activity. VD proximal urethras exhibited a significantly increased response to PE compared with that in controls. Conversely, proximal VD urethras had significantly decreased circumferential stress and FCR values in the presence of PE, suggesting that VD reduced the ability of the proximal segment to maintain smooth muscle tone at higher pressures and strains. Circumferential stress values for VD middle urethral segments were significantly higher than control values. Histological analyses using antibodies against general (protein gene product 9.5) and sympathetic (tyrosine hydroxylase) nerve markers showed a significant reduction in nerve density in VD proximal and middle urethral segments. These results strongly suggest that VD damages adrenergic nerves and alters adrenergic responses of proximal and middle urethral smooth muscle. Defects in urethral storage mechanisms, involving changes in adrenergic regulation, may contribute to stress urinary incontinence induced by simulated birth trauma.
Assuntos
Fibras Adrenérgicas/efeitos dos fármacos , Agonistas alfa-Adrenérgicos/farmacologia , Contração Muscular/efeitos dos fármacos , Músculo Liso/inervação , Parto , Fenilefrina/farmacologia , Uretra/inervação , Incontinência Urinária/etiologia , Fibras Adrenérgicas/patologia , Agonistas de Receptores Adrenérgicos alfa 1 , Animais , Complacência (Medida de Distensibilidade) , Modelos Animais de Doenças , Feminino , Lasers , Microdissecção/instrumentação , Músculo Liso/lesões , Músculo Liso/patologia , Gravidez , Pressão , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Uretra/lesões , Uretra/patologia , Incontinência Urinária/patologia , Incontinência Urinária/fisiopatologiaRESUMO
BACKGROUND & AIMS: The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology. METHODS: A human colon-on-a-chip (Colon Chip) microfluidic device lined by primary patient-derived colonic epithelial cells was used to recapitulate mucus bilayer formation, and to visualize mucus accumulation in living cultures noninvasively. RESULTS: The Colon Chip supports spontaneous goblet cell differentiation and accumulation of a mucus bilayer with impenetrable and penetrable layers, and a thickness similar to that observed in the human colon, while maintaining a subpopulation of proliferative epithelial cells. Live imaging of the mucus layer formation on-chip showed that stimulation of the colonic epithelium with prostaglandin E2, which is increased during inflammation, causes rapid mucus volume expansion via an Na-K-Cl cotransporter 1 ion channel-dependent increase in its hydration state, but no increase in de novo mucus secretion. CONCLUSIONS: This study shows the production of colonic mucus with a physiologically relevant bilayer structure in vitro, which can be analyzed in real time noninvasively. The Colon Chip may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases, such as ulcerative colitis and cancer.
Assuntos
Colo/metabolismo , Mucosa Intestinal/metabolismo , Dispositivos Lab-On-A-Chip , Muco/metabolismo , Células Cultivadas , Dinoprostona/metabolismo , Células Caliciformes/fisiologia , Humanos , Organoides , Cultura Primária de Células/métodos , Membro 1 da Família 12 de Carreador de Soluto/metabolismoRESUMO
Analyses of drug pharmacokinetics (PKs) and pharmacodynamics (PDs) performed in animals are often not predictive of drug PKs and PDs in humans, and in vitro PK and PD modelling does not provide quantitative PK parameters. Here, we show that physiological PK modelling of first-pass drug absorption, metabolism and excretion in humans-using computationally scaled data from multiple fluidically linked two-channel organ chips-predicts PK parameters for orally administered nicotine (using gut, liver and kidney chips) and for intravenously injected cisplatin (using coupled bone marrow, liver and kidney chips). The chips are linked through sequential robotic liquid transfers of a common blood substitute by their endothelium-lined channels (as reported by Novak et al. in an associated Article) and share an arteriovenous fluid-mixing reservoir. We also show that predictions of cisplatin PDs match previously reported patient data. The quantitative in-vitro-to-in-vivo translation of PK and PD parameters and the prediction of drug absorption, distribution, metabolism, excretion and toxicity through fluidically coupled organ chips may improve the design of drug-administration regimens for phase-I clinical trials.
Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica/métodos , Preparações Farmacêuticas , Farmacocinética , Animais , Cisplatino/farmacocinética , Desenho de Fármacos , Humanos , Técnicas In Vitro , Fígado/metabolismo , Microfluídica/instrumentação , Modelos Biológicos , Nicotina/farmacocinética , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/metabolismoRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
The inaccessibility of living bone marrow (BM) hampers the study of its pathophysiology under myelotoxic stress induced by drugs, radiation or genetic mutations. Here, we show that a vascularized human BM-on-a-chip (BM chip) supports the differentiation and maturation of multiple blood cell lineages over 4 weeks while improving CD34+ cell maintenance, and that it recapitulates aspects of BM injury, including myeloerythroid toxicity after clinically relevant exposures to chemotherapeutic drugs and ionizing radiation, as well as BM recovery after drug-induced myelosuppression. The chip comprises a fluidic channel filled with a fibrin gel in which CD34+ cells and BM-derived stromal cells are co-cultured, a parallel channel lined by human vascular endothelium and perfused with culture medium, and a porous membrane separating the two channels. We also show that BM chips containing cells from patients with the rare genetic disorder Shwachman-Diamond syndrome reproduced key haematopoietic defects and led to the discovery of a neutrophil maturation abnormality. As an in vitro model of haematopoietic dysfunction, the BM chip may serve as a human-specific alternative to animal testing for the study of BM pathophysiology.
Assuntos
Células da Medula Óssea/citologia , Medula Óssea/patologia , Hematopoese , Microfluídica/métodos , Animais , Antígenos CD34 , Medula Óssea/efeitos dos fármacos , Medula Óssea/efeitos da radiação , Transplante de Medula Óssea , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Dispositivos Lab-On-A-Chip , Células-Tronco Mesenquimais , Microfluídica/instrumentaçãoRESUMO
BACKGROUND: Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic Escherichia coli (EHEC) infection, whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities. RESULTS: We utilize organ-on-a-chip (Organ Chip) microfluidic culture technology to model damage of the human colonic epithelium induced by EHEC infection, and show that epithelial injury is greater when exposed to metabolites derived from the human gut microbiome compared to mouse. Using a multi-omics approach, we discovered four human microbiome metabolites-4-methyl benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid-that are sufficient to mediate this effect. The active human microbiome metabolites preferentially induce expression of flagellin, a bacterial protein associated with motility of EHEC and increased epithelial injury. Thus, the decreased tolerance to infection observed in humans versus other species may be due in part to the presence of compounds produced by the human intestinal microbiome that actively promote bacterial pathogenicity. CONCLUSION: Organ-on-chip technology allowed the identification of specific human microbiome metabolites modulating EHEC pathogenesis. These identified metabolites are sufficient to increase susceptibility to EHEC in our human Colon Chip model and they contribute to species-specific tolerance. This work suggests that higher concentrations of these metabolites could be the reason for higher susceptibility to EHEC infection in certain human populations, such as children. Furthermore, this research lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.