RESUMO
A T4-like coliphage cocktail was given with different oral doses to healthy Bangladeshi children in a placebo-controlled randomized phase I safety trial. Fecal phage detection was oral dose dependent suggesting passive gut transit of coliphages through the gut. No adverse effects of phage application were seen clinically and by clinical chemistry. Similar results were obtained for a commercial phage preparation (Coliproteus from Microgen/Russia). By 16S rRNA gene sequencing, only a low degree of fecal microbiota conservation was seen in healthy children from Bangladesh who were sampled over a time interval of 7 days suggesting a substantial temporal fluctuation of the fecal microbiota composition. Microbiota variability was not associated with the age of the children or the presence of phage in the stool. Stool microbiota composition of Bangladeshi children resembled that found in children of other regions of the world. Marked variability in fecal microbiota composition was also seen in 71 pediatric diarrhea patients receiving only oral rehydration therapy and in 38 patients receiving coliphage preparations or placebo when sampled 1.2 or 4 days apart respectively. Temporal stability of the gut microbiota should be assessed in case-control studies involving children before associating fecal microbiota composition with health or disease phenotypes.
Assuntos
Bacteriófagos/fisiologia , Terapia Biológica , Diarreia/terapia , Infecções por Escherichia coli/terapia , Escherichia coli/virologia , Bangladesh , Terapia Biológica/efeitos adversos , Criança , Pré-Escolar , Diarreia/microbiologia , Escherichia coli/fisiologia , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Fezes/virologia , Feminino , Humanos , Masculino , RNA Ribossômico 16SRESUMO
BACKGROUND & AIMS: Protein content of a meal is hypothesized to drive DIT dose-dependently. However, no single meal study exists comparing two different doses of protein on DIT. In addition, the source of protein, particularly whey protein, was shown to have a higher DIT than casein and soy in the acute setting, however the mechanism behind this difference is not yet clear. The aim of the present work is therefore to evaluate the efficacy of two different doses and types of protein (whey protein and casein) on DIT in overweight adults. METHODS: Randomized, double blind crossover including seventeen overweight men and women assigned to four isocaloric study treatments where protein and carbohydrate were exchanged: control, 30 g of whey protein microgels (WPM30), 50 g WPM (WPM50) or 50 g micellar casein (MC50). Energy expenditure was measured by indirect calorimetry. Blood, breath and urine samples were collected in order to measure substrate oxidation, amino acid profile, glucose and insulin, protein turnover and other metabolic parameters. RESULTS: DIT was 6.7 ± 3.7%, 13.0 ± 5.0%, 18.0 ± 5.0% and 16.0 ± 5.0% for control, WPM30, WPM50 and MC50, respectively. There was a significant difference between WPM50 and WPM30 (p < 0.005) and a trend was observed between WPM50 and MC50 (p = 0.06). WPM50 resulted in the highest total, essential, and branched-chain plasma amino acid concentrations when compared with the other study treatments (p < 0.005) and a higher insulin concentration than MC50 (p < 0.005). Protein oxidation was higher for WPM50 than MC50. Protein turnover was significantly correlated with DIT through total leucine oxidation (r = 0.52, p = 0.005). CONCLUSIONS: Our findings show that DIT does increase at a dose beyond 30 g of WPM and that the type of dairy protein may have an effect on DIT with WPM tending towards a higher DIT than casein. Although further research is required to understand the mechanism behind the effect of different protein sources on thermogenesis, we suggest that amongst the components of protein turnover, protein oxidation may be an important driver of thermogenesis at doses higher than 30 g. These results have concrete implications when choosing a dose of protein to optimize its thermogenic effect. CLINICAL TRIAL REGISTRY NUMBER: NCT02303080 www.clinicaltrials.gov.
Assuntos
Caseínas/farmacologia , Sobrepeso/metabolismo , Termogênese/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Adulto , Aminoácidos/sangue , Aminoácidos/metabolismo , Glicemia/análise , Estudos Cross-Over , Dieta , Método Duplo-Cego , Metabolismo Energético , Feminino , Humanos , Insulina/sangue , Masculino , Proteínas/metabolismoRESUMO
The human intestinal isolate Lactobacillus johnsonii NCC 533 (La1) is a probiotic strain with well-documented antimicrobial properties. Previous research has identified the production of lactic acid and bacteriocins as important factors, but that other unidentified factors are also involved. We used the recently published genome sequence of L. johnsonii NCC 533 to search for novel antipathogen factors and identified three potential gene products that may catalyze the synthesis of the known antimicrobial factor hydrogen peroxide, H(2)O(2). In this work, we confirmed the ability of NCC 533 as well as eight different L. johnsonii strains and Lactobacillus gasseri to produce H(2)O(2) when resting cells were incubated in the presence of oxygen, and that culture supernatant containing NCC 533-produced H(2)O(2) was effective in killing the model pathogen Salmonella enterica serovar Typhimurium SL1344 in vitro.
Assuntos
Antibiose , Peróxido de Hidrogênio/metabolismo , Lactobacillus/metabolismo , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Animais , Gatos , Cães , Humanos , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Células-TroncoRESUMO
SCOPE: Research is limited on diet challenges to improve health. A short-term, vegan protein diet regimen nutritionally balanced in macronutrient composition compared to an omnivorous diet is hypothesized to improve metabolic measurements of blood sugar regulation, blood lipids, and amino acid metabolism. METHODS AND RESULTS: This randomized, cross-over, controlled vegan versus animal diet challenge is conducted on 21 (11 female,10 male) healthy participants. Fasting plasma is measured during a 3 d diet intervention for clinical biochemistry and metabonomics. Intervention diet plans meet individual caloric needs. Meals are provided and supervised. Diet compliance is monitored. CONCLUSIONS: The vegan diet lowers triglycerides, insulin and homeostatic model assessment (HOMA-IR), bile acids, elevated magnesium levels, and changed branched-chain amino acids (BCAAs) metabolism (p < 0.05), potentiating insulin and blood sugar control after 48 h. Cholesterol control improves significantly in the vegan versus omnivorous diets. Plasma amino acid and magnesium concentrations positively correlate with dietary amino acids. Polyunsaturated fatty acids and dietary fiber inversely correlate with insulin, HOMA-IR, and triglycerides. Nutritional biochemistries, BCAAs, insulin, and HOMA-IR are impacted by sexual dimorphism. A health-promoting, BCAA-associated metabolic signature is produced from a short-term, healthy, controlled, vegan diet challenge when compared with a healthy, controlled, omnivorous diet.