Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 293(50): 19263-19276, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30337371

RESUMO

Preoperative progesterone intervention has been shown to confer a survival benefit to breast cancer patients independently of their progesterone receptor (PR) status. This observation raises the question how progesterone affects the outcome of PR-negative cancer. Here, using microarray and RNA-Seq-based gene expression profiling and ChIP-Seq analyses of breast cancer cells, we observed that the serum- and glucocorticoid-regulated kinase gene (SGK1) and the tumor metastasis-suppressor gene N-Myc downstream regulated gene 1 (NDRG1) are up-regulated and that the microRNAs miR-29a and miR-101-1 targeting the 3'-UTR of SGK1 are down-regulated in response to progesterone. We further demonstrate a dual-phase transcriptional and post-transcriptional regulation of SGK1 in response to progesterone, leading to an up-regulation of NDRG1 that is mediated by a set of genes regulated by the transcription factor AP-1. We found that NDRG1, in turn, inactivates a set of kinases, impeding the invasion and migration of breast cancer cells. In summary, we propose a model for the mode of action of progesterone in breast cancer. This model helps decipher the molecular basis of observations in a randomized clinical trial of the effect of progesterone on breast cancer and has therefore the potential to improve the prognosis of breast cancer patients receiving preoperative progesterone treatment.


Assuntos
Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas Imediatamente Precoces/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Progesterona/farmacologia , Proteínas Serina-Treonina Quinases/genética , Receptores de Progesterona/metabolismo , Fator de Transcrição AP-1/metabolismo , Regulação para Cima/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Proteínas Imediatamente Precoces/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/metabolismo
2.
Int J Cancer ; 144(8): 2008-2019, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30304546

RESUMO

The uncommonness of gallbladder cancer in the developed world has contributed to the generally poor understanding of the disease. Our integrated analysis of whole exome sequencing, copy number alterations, immunohistochemical, and phospho-proteome array profiling indicates ERBB2 alterations in 40% early-stage rare gallbladder tumors, among an ethnically distinct population not studied before, that occurs through overexpression in 24% (n = 25) and recurrent mutations in 14% tumors (n = 44); along with co-occurring KRAS mutation in 7% tumors (n = 44). We demonstrate that ERBB2 heterodimerizes with EGFR to constitutively activate the ErbB signaling pathway in gallbladder cells. Consistent with this, treatment with ERBB2-specific, EGFR-specific shRNA or with a covalent EGFR family inhibitor Afatinib inhibits tumor-associated characteristics of the gallbladder cancer cells. Furthermore, we observe an in vivo reduction in tumor size of gallbladder xenografts in response to Afatinib is paralleled by a reduction in the amounts of phospho-ERK, in tumors harboring KRAS (G13D) mutation but not in KRAS (G12V) mutation, supporting an essential role of the ErbB pathway. In overall, besides implicating ERBB2 as an important therapeutic target under neo-adjuvant or adjuvant settings, we present the first evidence that the presence of KRAS mutations may preclude gallbladder cancer patients to respond to anti-EGFR treatment, similar to a clinical algorithm commonly practiced to opt for anti-EGFR treatment in colorectal cancer.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Vesícula Biliar/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptor ErbB-2/genética , Adulto , Afatinib/farmacologia , Afatinib/uso terapêutico , Idoso , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Análise Mutacional de DNA , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Vesícula Biliar/patologia , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Mutação , Estadiamento de Neoplasias , Fosforilação/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Resultado do Tratamento , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell Death Dis ; 9(12): 1142, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442925

RESUMO

Radiation-induced bystander effect (RIBE) is a poorly understood phenomenon wherein non-targeted cells exhibit effects of radiation. We have reported that cell-free chromatin (cfCh) particles that are released from dying cells can integrate into genomes of surrounding healthy cells to induce DNA damage and inflammation. This raised the possibility that RIBE might be induced by cfCh released from irradiated dying cells. When conditioned media from BrdU-labeled irradiated cells were passed through filters of pore size 0.22 µm and incubated with unexposed cells, BrdU-labeled cfCh particles could be seen to readily enter their nuclei to activate H2AX, active Caspase-3, NFκB, and IL-6. A direct relationship was observed with respect to activation of RIBE biomarkers and radiation dose in the range of 0.1-0 Gy. We confirmed by FISH and cytogenetic analysis that cfCh had stably integrated into chromosomes of bystander cells and had led to extensive chromosomal instability. The above RIBE effects could be abrogated when conditioned media were pre-treated with agents that inactivate cfCh, namely, anti-histone antibody complexed nanoparticles (CNPs), DNase I and a novel DNA degrading agent Resveratrol-copper (R-Cu). Lower hemi-body irradiation with γ-rays (0.1-50 Gy) led to activation of H2AX, active Caspase-3, NFκB, and IL-6 in brain cells in a dose-dependent manner. Activation of these RIBE biomarkers could be abrogated by concurrent treatment with CNPs, DNase I and R-Cu indicating that activation of RIBE was not due to radiation scatter to the brain. RIBE activation was seen even when mini-beam radiation was delivered to the umbilical region of mice wherein radiation scatter to brain was negligible and could be abrogated by cfCh inactivating agents. These results indicate that cfCh released from radiation-induced dying cells are activators of RIBE and that it can be prevented by treatment with appropriate cfCh inactivating agents.


Assuntos
Cromatina/genética , Inflamação/tratamento farmacológico , Lesões por Radiação/tratamento farmacológico , Resveratrol/farmacologia , Animais , Efeito Espectador/efeitos dos fármacos , Efeito Espectador/efeitos da radiação , Caspase 3/genética , Sistema Livre de Células/efeitos dos fármacos , Sistema Livre de Células/efeitos da radiação , Cromatina/efeitos dos fármacos , Cromatina/efeitos da radiação , Cobre/farmacologia , Meios de Cultivo Condicionados/farmacologia , Dano ao DNA/efeitos da radiação , Desoxirribonuclease I/genética , Modelos Animais de Doenças , Raios gama/efeitos adversos , Histonas/genética , Humanos , Inflamação/genética , Inflamação/patologia , Interleucina-6/genética , Camundongos , NF-kappa B/genética , Lesões por Radiação/genética , Lesões por Radiação/patologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-27402678

RESUMO

Cancer is predominantly a somatic disease. A mutant allele present in a cancer cell genome is considered somatic when it's absent in the paired normal genome along with public SNP databases. The current build of dbSNP, the most comprehensive public SNP database, however inadequately represents several non-European Caucasian populations, posing a limitation in cancer genomic analyses of data from these populations. We present the T: ata M: emorial C: entre-SNP D: ata B: ase (TMC-SNPdb), as the first open source, flexible, upgradable, and freely available SNP database (accessible through dbSNP build 149 and ANNOVAR)-representing 114 309 unique germline variants-generated from whole exome data of 62 normal samples derived from cancer patients of Indian origin. The TMC-SNPdb is presented with a companion subtraction tool that can be executed with command line option or using an easy-to-use graphical user interface with the ability to deplete additional Indian population specific SNPs over and above dbSNP and 1000 Genomes databases. Using an institutional generated whole exome data set of 132 samples of Indian origin, we demonstrate that TMC-SNPdb could deplete 42, 33 and 28% false positive somatic events post dbSNP depletion in Indian origin tongue, gallbladder, and cervical cancer samples, respectively. Beyond cancer somatic analyses, we anticipate utility of the TMC-SNPdb in several Mendelian germline diseases. In addition to dbSNP build 149 and ANNOVAR, the TMC-SNPdb along with the subtraction tool is available for download in the public domain at the following:Database URL: http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNP/TMCSNPdp.html.


Assuntos
Povo Asiático/genética , Bases de Dados de Ácidos Nucleicos , Genoma Humano , Mutação em Linhagem Germinativa , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Feminino , Humanos , Índia , Masculino
5.
Oncotarget ; 7(31): 50437-50449, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27391340

RESUMO

BACKGROUND: Notch pathway plays a complex role depending on cellular contexts: promotes stem cell maintenance or induces terminal differentiation in potential cancer-initiating cells; acts as an oncogene in lymphocytes and mammary tissue or plays a growth-suppressive role in leukemia, liver, skin, and head and neck cancer. Here, we present a novel clinical and functional significance of NOTCH1 alterations in early stage tongue squamous cell carcinoma (TSCC). PATIENTS AND METHODS: We analyzed the Notch signaling pathway in 68 early stage TSCC primary tumor samples by whole exome and transcriptome sequencing, real-time PCR based copy number, expression, immuno-histochemical, followed by cell based biochemical and functional assays. RESULTS: We show, unlike TCGA HNSCC data set, NOTCH1 harbors significantly lower frequency of inactivating mutations (4%); is somatically amplified; and, overexpressed in 31% and 37% of early stage TSCC patients, respectively. HNSCC cell lines over expressing NOTCH1, when plated in the absence of attachment, are enriched in stem cell markers and form spheroids. Furthermore, we show that inhibition of NOTCH activation by gamma secretase inhibitor or shRNA mediated knockdown of NOTCH1 inhibits spheroid forming capacity, transformation, survival and migration of the HNSCC cells suggesting an oncogenic role of NOTCH1 in TSCC. Clinically, Notch pathway activation is higher in tumors of non-smokers compared to smokers (50% Vs 18%, respectively, P=0.026) and is also associated with greater nodal positivity compared to its non-activation (93% Vs 64%, respectively, P=0.029). CONCLUSION: We anticipate that these results could form the basis for therapeutic targeting of NOTCH1 in tongue cancer.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Células-Tronco Neoplásicas/citologia , Receptor Notch1/metabolismo , Neoplasias da Língua/metabolismo , Adulto , Idoso , Carcinoma de Células Escamosas/genética , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Exoma , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Células-Tronco Neoplásicas/patologia , Receptor Notch1/genética , Transdução de Sinais/genética , Fumar/efeitos adversos , Esferoides Celulares/metabolismo , Neoplasias da Língua/genética , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA