RESUMO
Triple-Negative Breast Cancer (TNBC) is a particularly aggressive subtype among breast cancers (BCs), characterized by anoikis resistance, high invasiveness, and metastatic potential as well as Epithelial-Mesenchymal Transition (EMT) and stemness features. In the last few years, our research focused on the function of MCL1, an antiapoptotic protein frequently deregulated in TNBC. Here, we demonstrate that MCL1 inhibition by A-1210477, a specific BH3-mimetic, promotes anoikis/apoptosis in the MDA-MB-231 cell line, as shown via an increase in proapoptotic markers and caspase activation. Our evidence also shows A-1210477 effects on Focal Adhesions (FAs) impairing the integrin trim and survival signaling pathways, such as FAK, AKT, ERK, NF-κB, and GSK3ß-inducing anoikis, thus suggesting a putative role of MCL1 in regulation of FA dynamics. Interestingly, in accordance with these results, we observed a reduction in migratory and invasiveness capabilities as confirmed by a decrease in metalloproteinases (MMPs) levels following A-1210477 treatment. Moreover, MCL1 inhibition promotes a reduction in EMT characteristics as demonstrated by the downregulation of Vimentin, MUC1, DNMT1, and a surprising re-expression of E-Cadherin, suggesting a possible mesenchymal-like phenotype reversion. In addition, we also observed the downregulation of stemness makers such as OCT3/4, SOX2, NANOG, as well as CD133, EpCAM, and CD49f. Our findings support the idea that MCL1 inhibition in MDA-MB-231 could be crucial to reduce anoikis resistance, aggressiveness, and metastatic potential and to minimize EMT and stemness features that distinguish TNBC.
Assuntos
Células MDA-MB-231 , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proteína de Sequência 1 de Leucemia de Células Mieloides , Anoikis , Proliferação de Células , Transição Epitelial-Mesenquimal , Movimento CelularRESUMO
A diet rich in saturated fatty acids (FAs) has been correlated with metabolic dysfunction and ROS increase in the adipose tissue of obese subjects. Thus, reducing hypertrophy and oxidative stress in adipose tissue can represent a strategy to counteract obesity and obesity-related diseases. In this context, the present study showed how the peel and seed extracts of mango (Mangifera indica L.) reduced lipotoxicity induced by high doses of sodium palmitate (PA) in differentiated 3T3-L1 adipocytes. Mango peel (MPE) and mango seed (MSE) extracts significantly lowered PA-induced fat accumulation by reducing lipid droplet (LDs) and triacylglycerol (TAGs) content in adipocytes. We showed that MPE and MSE activated hormone-sensitive lipase, the key enzyme of TAG degradation. In addition, mango extracts down-regulated the adipogenic transcription factor PPARγ as well as activated AMPK with the consequent inhibition of acetyl-CoA-carboxylase (ACC). Notably, PA increased endoplasmic reticulum (ER) stress markers GRP78, PERK and CHOP, as well as enhanced the reactive oxygen species (ROS) content in adipocytes. These effects were accompanied by a reduction in cell viability and the induction of apoptosis. Interestingly, MPE and MSE counteracted PA-induced lipotoxicity by reducing ER stress markers and ROS production. In addition, MPE and MSE increased the level of the anti-oxidant transcription factor Nrf2 and its targets MnSOD and HO-1. Collectively, these results suggest that the intake of mango extract-enriched foods in association with a correct lifestyle could exert beneficial effects to counteract obesity.
Assuntos
Mangifera , Humanos , Camundongos , Animais , Palmitatos/toxicidade , Palmitatos/metabolismo , Células 3T3-L1 , Espécies Reativas de Oxigênio/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo , Adipogenia , Hipertrofia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Sementes/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory disorder affecting the gastrointestinal tract (GT) caused by a wide range of genetic, microbial, and environmental factors. IBD is characterized by chronic inflammation and decreased gut microbial diversity, dysbiosis, with a lower number of beneficial bacteria and a concomitant increase in pathogenic species. It is well known that dysbiosis is closely related to the induction of inflammation and oxidative stress, the latter caused by an imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity, leading to cellular ROS accumulation. ROS are responsible for intestinal epithelium oxidative damage and the increased intestinal permeability found in IBD patients, and their reduction could represent a potential therapeutic strategy to limit IBD progression and alleviate its symptoms. Recent evidence has highlighted that dietary polyphenols, the natural antioxidants, can maintain redox equilibrium in the GT, preventing gut dysbiosis, intestinal epithelium damage, and radical inflammatory responses. Here, we suggest that the relatively new foodomics approaches, together with new technologies for promoting the antioxidative properties of dietary polyphenols, including novel delivery systems, chemical modifications, and combination strategies, may provide critical insights to determine the clinical value of polyphenols for IBD therapy and a comprehensive perspective for implementing natural antioxidants as potential IBD candidate treatment.
Assuntos
Doenças Inflamatórias Intestinais , Polifenóis , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Espécies Reativas de Oxigênio , Disbiose/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Inflamação/genética , Antioxidantes/farmacologia , Antioxidantes/uso terapêuticoRESUMO
Non-alcoholic fatty liver disease (NAFLD) is an emerging chronic liver disease worldwide. Curcumin and andrographolide are famous for improving hepatic functions, being able to reverse oxidative stress and release pro-inflammatory cytokines, and they are implicated in hepatic stellate cell activation and in liver fibrosis development. Thus, we tested curcumin and andrographolide separately and in combination to determine their effect on triglyceride accumulation and ROS production, identifying the differential expression of genes involved in fatty liver and oxidative stress development. In vitro steatosis was induced in HepG2 cells and the protective effect of curcumin, andrographolide, and their combination was observed evaluating cell viability, lipid and triglyceride content, ROS levels, and microarray differential gene expression. Curcumin, andrographolide, and their association were effective in reducing steatosis, triglyceride content, and ROS stress, downregulating the genes involved in lipid accumulation. Moreover, the treatments were able to protect the cytotoxic effect of steatosis, promoting the expression of survival and anti-inflammatory genes. The present study showed that the association of curcumin and andrographolide could be used as a therapeutic approach to counter high lipid content and ROS levels in steatosis liver, avoiding the possible hepatotoxic effect of curcumin. Furthermore, this study improved our understanding of the antisteatosis and hepatoprotective properties of a curcumin and andrographolide combination.
Assuntos
Curcumina , Hepatopatia Gordurosa não Alcoólica , Humanos , Células Hep G2 , Curcumina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/genética , Triglicerídeos/metabolismo , FígadoRESUMO
Obesity is a complex disease caused by an excessive amount of body fat. Obesity is a medical problem and represents an important risk factor for the development of serious diseases such as insulin resistance, type 2 diabetes, cardiovascular disease, and some types of cancer. Not to be overlooked are the psychological issues that, in obese subjects, turn into very serious pathologies, such as depression, phobias, anxiety, and lack of self-esteem. In addition to modifying one's lifestyle, the reduction of body mass can be promoted by different natural compounds such as essential oils (EOs). EOs are mixtures of aromatic substances produced by many plants, particularly in medicinal and aromatic ones. They are odorous and volatile and contain a mixture of terpenes, alcohols, aldehydes, ketones, and esters. Thanks to the characteristics of the various chemical components present in them, EOs are used in the food, cosmetic, and pharmaceutical fields. Indeed, it has been shown that EOs possess great antibiotic, anti-inflammatory, and antitumor powers. Emerging results also demonstrate the anti-obesity effects of EOs. We have examined the main data obtained in experimental studies and, in this review, we summarize the effect of EOs in obesity and obesity-related metabolic diseases.
Assuntos
Anti-Inflamatórios/uso terapêutico , Obesidade/tratamento farmacológico , Óleos Voláteis/uso terapêutico , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/prevenção & controle , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Humanos , Resistência à Insulina , Neoplasias/etiologia , Neoplasias/prevenção & controle , Obesidade/complicaçõesRESUMO
The present study shows that nuclear factor erythroid 2-related factor 2 (NRF2) and miR-29b-1-5p are two opposite forces which could regulate the fate of MDA-MB-231 cells, the most studied triple-negative breast cancer (TNBC) cell line. We show that NRF2 activation stimulates cell growth and markedly reduces reactive oxygen species (ROS) generation, whereas miR-29b-1-5p overexpression increases ROS generation and reduces cell proliferation. Moreover, NRF2 downregulates miR-29b-1-5p expression, whereas miR-29b-1-5p overexpression decreases p-AKT and p-NRF2. Furthermore, miR-29b-1-5p overexpression induces both inhibition of DNA N-methyltransferases (DNMT1, DNMT3A, and DNMT3B) expression and re-expression of HIN1, RASSF1A and CCND2. Conversely, NRF2 activation induces opposite effects. We also show that parthenolide, a naturally occurring small molecule, induces the expression of miR-29b-1-5p which could suppress NRF2 activation via AKT inhibition. Overall, this study uncovers a novel NRF2/miR-29b-1-5p/AKT regulatory loop that can regulate the fate (life/death) of MDA-MB-231 cells and suggests this loop as therapeutic target for TNBC.
Assuntos
MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D2/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , DNA Metiltransferase 3A , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Transdução de Sinais/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/metabolismo , DNA Metiltransferase 3BRESUMO
Triple-negative breast cancer (TNBC) is a form of BC characterized by high aggressiveness and therapy resistance probably determined by cancer stem cells. MCL1 is an antiapoptotic Bcl-2 family member that could limit the efficacy of anticancer agents as recombinant human tumor necrosis factor related apoptosis-inducing ligand (rh-TRAIL). Here, we investigated MCL1 expression in TNBC tissues and cells. We found MCL1 differentially expressed (upregulated or downregulated) in TNBC tissues. Furthermore, in comparison to the human mammary epithelial cells, we found that MDA-MB-231 cells show similar messenger RNA levels but higher MCL1 protein levels, whereas it resulted downregulated in MDA-MB-436 and BT-20 cells. We evaluated the effects of rh-TRAIL and A-1210477, a selective MCL1 inhibitor, on cell viability and growth of MDA-MB-231 cells. We demonstrated that the drug combination reduced the cell growth and activated the apoptotic pathway. Similar effects were observed on three-dimensional cultures and tertiary mammospheres of MDA-MB-231 cells. In MDA-MB-231 cells, after MCL1 silencing, rh-TRAIL confined the cell population in the sub-G0/G1 phase and induced a drop in the mitochondrial transmembrane potential. To understand the molecular mechanism by which the loss of MCL1 function sensitizes the MDA-MB-231 cells to rh-TRAIL, we analyzed by real-time reverse transcription polymerase chain reaction, the expression of genes related to apoptosis, stemness, cell cycle, and those involved in epigenetic regulation. Interestingly, among the upregulated genes through MCL1 silencing or inhibition, there was TNFRSF10A (DR4). Moreover, MCL1 inhibition increased DR4 protein levels and its cell surface expression. Finally, we demonstrated MCL1-DR4 interaction and dissociation of this complex after A-1210477 treatment. Overall, our findings highlight the potential MCL1-roles in MDA-MB-231 cells and suggest that MCL1 targeting could be an effective strategy to overcome TNBC's rh-TRAIL resistance.
Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Indóis/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sulfonamidas/farmacologiaRESUMO
Cow's milk (CM) is a healthy food consumed worldwide by individuals of all ages. Unfortunately, "lactase-deficient" individuals cannot digest milk's main carbohydrate, lactose, depriving themselves of highly beneficial milk proteins like casein, lactoalbumin, and lactoglobulin due to lactose intolerance (LI), while other individuals develop allergies specifically against these proteins (CMPA). The management of these conditions differs, and an inappropriate diagnosis or treatment may have significant implications for the patients, especially if they are infants or very young children, resulting in unnecessary dietary restrictions or avoidable adverse reactions. Omics technologies play a pivotal role in elucidating the intricate interactions between nutrients and the human body, spanning from genetic factors to the microbiota profile and metabolites. This comprehensive approach enables the precise delineation and identification of distinct cohorts of individuals with specific dietary requirements, so that tailored nutrition strategies can be developed. This is what is called personalized nutrition or precision nutrition (PN), the area of nutrition that focuses on the effects of nutrients on the genome, proteome, and metabolome, promoting well-being and health, preventing diseases, reducing chronic disease incidence, and increasing life expectancy. Here, we report the opinion of the scientific community proposing to replace the "one size fits all" approach with tailor-made nutrition programs, designed by integrating nutrigenomic data together with clinical parameters and microbiota profiles, taking into account the individual lactose tolerance threshold and needs in terms of specific nutrients intake. This customized approach could help LI patients to improve their quality of life, overcoming depression or anxiety often resulting from the individual perception of this condition as different from a normal state.
Assuntos
Intolerância à Lactose , Hipersensibilidade a Leite , Lactente , Criança , Animais , Bovinos , Feminino , Humanos , Pré-Escolar , Intolerância à Lactose/genética , Intolerância à Lactose/diagnóstico , Leite , Hipersensibilidade a Leite/diagnóstico , Lactose , Qualidade de Vida , Proteínas do Leite/efeitos adversosRESUMO
From the perspective of circular economy, it is extremely useful to recycle waste products for human health applications. Among the health-beneficial properties of bioactive phyto-compounds, grape pomace represents a precious source of bioactive molecules with potential antitumor properties. Here, we describe the effects of a Sicilian grape pomace hydroalcoholic extract (HE) in colon and breast cancer cells. The characterization of HE composition revealed the predominance of anthoxanthins and phenolic acids. HE treatment was more effective in reducing the viability of colon cancer cells, while breast cancer cells appeared more resistant. Indeed, while colon cancer cells underwent apoptosis, as shown by DNA fragmentation, caspase-3 activation, and PARP1 degradation, breast cancer cells seemed to not undergo apoptosis. To elucidate the underlying mechanisms, reactive oxygen species (ROS) were evaluated. Interestingly, ROS increased in both cell lines but, while in colon cancer, cells' ROS rapidly increased and progressively diminished over time, in breast cancer, cells' ROS increase was persistent up to 24 h. This effect was correlated with the induction of pro-survival autophagy, demonstrated by autophagosomes formation, autophagic markers increase, and protection by the antioxidant NAC. The autophagy inhibitor bafilomycin A1 significantly increased the HE effects in breast cancer cells but not in colon cancer cells. Overall, our data provide evidence that HE efficacy in tumor cells depends on a balance between ROS-mediated autophagy and apoptosis. Therefore, inhibiting pro-survival autophagy may be a tool to target those cells that appear more resistant to the effect of HE.
Assuntos
Apoptose , Autofagia , Extratos Vegetais , Espécies Reativas de Oxigênio , Vitis , Espécies Reativas de Oxigênio/metabolismo , Humanos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Vitis/química , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologiaRESUMO
Origanum vulgare L. is an aromatic plant that exerts antibacterial, antioxidant, anti-inflammatory, and antitumor activities, mainly due to its essential oil (EO) content. In this study, we investigated the possible mechanism underlying the in vitro antitumor activity of EO extracted by hydrodistillation of dried flowers and leaves of Origanum vulgare L. grown in Sicily (Italy) in MDA-MB-231 and MCF-7 breast cancer cell lines. Gas chromatography-mass spectrometry analysis of Oregano essential oil (OEO) composition highlighted the presence of twenty-six major phytocompounds, such as p-cymene, γ-terpinene, and thymoquinone p-acetanisole. OEO possesses strong antioxidant capacity, as demonstrated by the DPPH test. Our studies provided evidence that OEO reduces the viability of both MCF-7 and MDA-MB-231 cells. The cytotoxic effect of OEO on breast cancer cells was partially counteracted by the addition of z-VAD-fmk, a general caspase inhibitor. Caspases and mitochondrial dysfunction appeared to be involved in the OEO-induced death mechanism. Western blotting analysis showed that OEO-induced activation of pro-caspases-9 and -3 and fragmentation of PARP decreased the levels of Bcl-2 and Bcl-xL while increasing those of Bax and VDAC. In addition, fluorescence microscopy and cytofluorimetric analysis showed that OEO induces a loss of mitochondrial membrane potential in both cell lines. Furthermore, we tested the effects of p-cymene, γ-terpinene, thymoquinone, and p-acetanisole, which are the main components of OEO. Our findings highlighted that the effect of OEO on MDA-MB-231 and MCF-7 cells appears to be mainly due to the combination of different constituents of OEO, providing evidence of the potential use of OEO for breast cancer treatment.
Assuntos
Antineoplásicos , Neoplasias da Mama , Óleos Voláteis , Origanum , Humanos , Feminino , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Origanum/química , Antioxidantes/análise , Neoplasias da Mama/patologia , CaspasesRESUMO
Due to its chemical properties and multiple molecular effects on different tumor cell types, the sesquiterpene lactone parthenolide (PN) can be considered an effective drug with significant potential in cancer therapy. PN has been shown to induce either classic apoptosis or alternative caspase-independent forms of cell death in many tumor models. The therapeutical potential of PN has been increased by chemical design and synthesis of more soluble analogues including dimethylaminoparthenolide (DMAPT). This review focuses on the molecular mechanisms of both PN and analogues action in tumor models, highlighting their effects on gene expression, signal transduction and execution of different types of cell death. Recent findings indicate that these compounds not only inhibit prosurvival transcriptional factors such as NF-κB and STATs but can also determine the activation of specific death pathways, increasing intracellular reactive oxygen species (ROS) production and modifications of Bcl-2 family members. An intriguing property of these compounds is its specific targeting of cancer stem cells. The unusual actions of PN and its analogues make these agents good candidates for molecular targeted cancer therapy.
RESUMO
Several studies highlighted the beneficial value of natural compounds in the prevention and treatment of obesity. Here, we investigated the anti-obesity effects of extracts of peel and seed of mango (Mangifera indica L.) cultivated in Sicily (Italy) in 3T3-L1 cells. Mango Peel (MPE) and Mango Seed (MSE) extracts at a 100 µg/mL concentration significantly reduced lipid accumulation and triacylglycerol contents during 3T3-L1 adipocyte differentiation without toxicity. HPLC-ESI-MS analysis showed that both the extracts contain some polyphenolic compounds that can account for the observed biological effects. The anti-adipogenic effect of MPE and MSE was the result of down-regulation of the key adipogenic transcription factor PPARγ and its downstream targets FABP4/aP2, GLUT4 and Adipsin, as well SREBP-1c, a transcription factor which promotes lipogenesis. In addition, both MPE and MSE significantly activated AMPK with the consequent inhibition of Acetyl-CoA-carboxylase (ACC) and up-regulated PPARα. The addition of compound C, a specific AMPK inhibitor, reduced the effects of MPE and MSE on AMPK and ACC phosphorylation, suggesting a role of AMPK in mediating MPE and MSE anti-lipogenic effects. Notably, MPE and MSE possess an elevated radical scavenging activity, as demonstrated by DPPH radical scavenging assay, and reduced ROS content produced during adipocyte differentiation. This last effect could be a consequence of the increase in the antioxidant factors Nrf2, MnSOD and HO-1. In conclusion, MPE and MSE possesses both anti-adipogenic and antioxidant potential, thus suggesting that the bio-waste products of mango are promising anti-obesity natural compounds.