Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 20(4): 2647-2653, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32196350

RESUMO

Wood, as the most abundant carbon dioxide storing bioresource, is currently driven beyond its traditional use through creative innovations and nanotechnology. For many properties the micro- and nanostructure plays a crucial role and one key challenge is control and detection of chemical and physical processes in the confined microstructure and nanopores of the wooden cell wall. In this study, correlative Raman and atomic force microscopy show high potential for tracking in situ molecular rearrangement of wood polymers during compression. More water molecules (interpreted as wider cellulose microfibril distances) and disentangling of hemicellulose chains are detected in the opened cell wall regions, whereas an increase of lignin is revealed in the compressed areas. These results support a new more "loose" cell wall model based on flexible lignin nanodomains and advance our knowledge of the molecular reorganization during deformation of wood for optimized processing and utilization.

2.
Tree Physiol ; 38(10): 1526-1537, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992254

RESUMO

The transition from the living water-transporting sapwood to heartwood involves in many tree species impregnation with extractives. These differ in amount and composition, and enhance resistance against bacteria, insects or fungi. To understand the synthesis, transport and impregnation processes new insights into the biochemical processes are needed by in-situ methods. Here we show the extractive distribution in pine (Pinus sylvestris) microsections with a high lateral resolution sampled in a non-destructive manner using Confocal Raman Microscopy. Integrating marker bands of stilbenes and lipids enables to clearly track the rapid change from sapwood to heartwood within one tree ring. The higher impregnation of the cell corner, compound middle lamella, the S3 layer and pits reveals the optimization of decay resistance on the micron-level. Furthermore, deposits with changing chemical composition are elucidated in the rays and lumen of the tracheids. The spectral signature of these deposits shows the co-location of lipids and pinosylvins with changing ratios from the living to the dead tissue. The results demonstrate that the extractive impregnation on the micro- and nano-level is optimized by a symbiotic relationship of lipids and pinosylvins to enhance the tree's resistance and lifetime.


Assuntos
Antifúngicos/metabolismo , Pinus sylvestris/metabolismo , Estilbenos/metabolismo , Transporte Biológico , Microscopia Confocal , Pinus sylvestris/citologia , Análise Espectral Raman , Madeira/citologia , Madeira/metabolismo
3.
Plant Methods ; 14: 52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997681

RESUMO

BACKGROUND: Plant cell walls are nanocomposites based on cellulose microfibrils embedded in a matrix of polysaccharides and aromatic polymers. They are optimized for different functions (e.g. mechanical stability) by changing cell form, cell wall thickness and composition. To reveal the composition of plant tissues in a non-destructive way on the microscale, Raman imaging has become an important tool. Thousands of Raman spectra are acquired, each one being a spatially resolved molecular fingerprint of the plant cell wall. Nevertheless, due to the multicomponent nature of plant cell walls, many bands are overlapping and classical band integration approaches often not suitable for imaging. Multivariate data analysing approaches have a high potential as the whole wavenumber region of all thousands of spectra is analysed at once. RESULTS: Three multivariate unmixing algorithms, vertex component analysis, non-negative matrix factorization and multivariate curve resolution-alternating least squares were applied to find the purest components within datasets acquired from micro-sections of spruce wood and Arabidopsis. With all three approaches different cell wall layers (including tiny S1 and S3 with 0.09-0.14 µm thickness) and cell contents were distinguished and endmember spectra with a good signal to noise ratio extracted. Baseline correction influences the results obtained in all methods as well as the way in which algorithm extracts components, i.e. prioritizing the extraction of positive endmembers by sequential orthogonal projections in VCA or performing a simultaneous extraction of non-negative components aiming at explaining the maximum variance in NMF and MCR-ALS. Other constraints applied (e.g. closure in VCA) or a previous principal component analysis filtering step in MCR-ALS also contribute to the differences obtained. CONCLUSIONS: VCA is recommended as a good preliminary approach, since it is fast, does not require setting many input parameters and the endmember spectra result in good approximations of the raw data. Yet the endmember spectra are more correlated and mixed than those retrieved by NMF and MCR-ALS methods. The latter two give the best model statistics (with lower lack of fit in the models), but care has to be taken about overestimating the rank as it can lead to artificial shapes due to peak splitting or inverted bands.

4.
Sci Rep ; 8(1): 11804, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087373

RESUMO

Raman microscopy is a powerful imaging technique for biological materials providing information about chemistry in context with microstructure. A 532 nm laser is often used as excitation source, because high spatial resolution and signal intensity can be achieved. The latter can be controlled by laser power and integration time, whereby high power and long times give good signal to noise ratio. However, most biological materials absorb in the VIS range and fluorescence masking the signal or even sample degradation might be hindering. Here, we show that on lignified plant cell walls even very short integration times and low laser powers induce a change in the ratio of the lignin bands at 1660 and 1600 cm-1. Time series on lignin model compounds revealed this change only in aromatic molecules with two OH-groups, such as coniferyl alcohol. Therefore, we conclude that monolignols are present in the cell wall and responsible for the observed effect. The solvent selectivity of the changes points to a laser induced polymerization process. The results emphasize how crucial careful adjustment of experimental parameters in Raman imaging of biological materials is and show the potential of time series and repeated imaging to get additional insights (e.g. monolignols).


Assuntos
Parede Celular/metabolismo , Lignina/metabolismo , Microscopia Óptica não Linear/métodos , Fenilpropionatos/metabolismo , Picea/metabolismo
5.
Microsc Res Tech ; 80(1): 30-40, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27514318

RESUMO

Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non-destructive methods and reveal mechanical and chemical properties on the micro and nano-scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50-150 nm in near-field Raman and 1.7-50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose-lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30-40, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Microscopia de Força Atômica , Análise Espectral Raman , Bioensaio , Celulose/ultraestrutura , Estudos de Viabilidade , Lignina/ultraestrutura , Microscopia Confocal , Microscopia de Varredura por Sonda , Relação Estrutura-Atividade
6.
Biotechnol J ; 12(1)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27440252

RESUMO

As a possible viable and non-invasive method to identify high producing cells, Confocal Raman Microscopy was shown to be able to differentiate CHO host cell lines and derivative production clones. Cluster analysis of spectra and their derivatives was able to differentiate between different producer cell lines and a host, and also distinguished between an intracellular region of high lipid and protein content that in structure resembles the Endoplasmic Reticulum. This ability to identify the ER may be a major contributor to the identification of high producers. PCA enabled the discrimination even of host cell lines and their subclones with inherently higher production capacity. The method is thus a promising option that may contribute to early, non-invasive identification of high potential candidates during cell line development and possibly could also be used for proof of identity of established production clones.


Assuntos
Células CHO/citologia , Células CHO/ultraestrutura , Microscopia Confocal/métodos , Engenharia de Proteínas/métodos , Adalimumab/genética , Adalimumab/metabolismo , Amina Oxidase (contendo Cobre)/genética , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Análise por Conglomerados , Cricetulus , Retículo Endoplasmático/ultraestrutura , Humanos , Lipídeos/química , Metais/química , Imagem Molecular/métodos , Análise de Componente Principal , Proteínas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise Espectral Raman/métodos
7.
Front Chem ; 4: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26973831

RESUMO

Waterproofing of the aerial organs of plants imposed a big evolutionary step during the colonization of the terrestrial environment. The main plant polymers responsible of water repelling are lipids and lignin, which play also important roles in the protection against biotic/abiotic stresses, regulation of flux of gases and solutes, and mechanical stability against negative pressure, among others. While the lipids, non-polymerized cuticular waxes together with the polymerized cutin, protect the outer surface, lignin is confined to the secondary cell wall within mechanical important tissues. In the present work a micro cross-section of the stem of Arabidopsis thaliana was used to track in situ the distribution of these non-carbohydrate polymers by Confocal Raman Microscopy. Raman hyperspectral imaging gives a molecular fingerprint of the native waterproofing tissues and cells with diffraction limited spatial resolution (~300 nm) at relatively high speed and without any tedious sample preparation. Lipids and lignified tissues as well as their effect on water content was directly visualized by integrating the 1299, 1600, and 3400 cm(-1) band, respectively. For detailed insights into compositional changes of these polymers vertex component analysis was performed on selected sample positions. Changes have been elucidated in the composition of lignin within the lignified tissues and between interfascicular fibers and xylem vessels. Hydrophobizing changes were revealed from the epidermal layer to the cuticle as well as a change in the aromatic composition within the cuticle of trichomes. To verify Raman signatures of different waterproofing polymers additionally Raman spectra of the cuticle and cutin monomer from tomato (Solanum lycopersicum) as well as aromatic model polymers (milled wood lignin and dehydrogenation polymer of coniferyl alcohol) and phenolic acids were acquired.

8.
Microsc Res Tech ; 77(8): 560-5, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24807829

RESUMO

Cell mechanics provides insights in cell responses to external stress, which is an important parameter known to influence a variety of cell functions. Understanding the interdependence between mechanical stimulus, cell shape and function is essential in controlling cell culture microenvironment. In this paper, we report on the effect of cationic and anionic interfaces on cell shape and nanoparticle uptake activity of hepatocellular carcinoma cells HepG2. The shape of HepG2 cells changed from a round-like shape to a spread-like form exhibiting lamellar protrusions by incubating them on coated polystyrene well plates with polystyrene sulfonate and poly-ethylene imine (PEI), respectively. This change in shape of HepG2 cells did not influence the uptake of 49-nm particles (which entered the cells by diffusion). However, the internalization of 240-nm diameter particles was larger on cells seeded on cationic PEI. Particle uptake was measured at 4°C and 37°C; the optimal incubation time was 6 h. Cell shape and particle uptake were monitored by fluorescence and confocal microscopy. Quantification of particle internalization was carried out with flow cytometry.


Assuntos
Forma Celular/fisiologia , Nanopartículas/metabolismo , Transporte Biológico , Técnicas de Cultura de Células , Forma Celular/efeitos dos fármacos , Microambiente Celular , Difusão , Células Hep G2 , Humanos , Microscopia de Fluorescência , Polietilenoimina/farmacologia , Poliestirenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA