Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 107(6): 1096-1112, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232675

RESUMO

SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.


Assuntos
Proteínas Cromossômicas não Histona/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Criança , Pré-Escolar , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Genes Dominantes , Variação Genética , Haploinsuficiência , Humanos , Lactente , Masculino , Microscopia Confocal , Neuroglia/metabolismo , Neurônios/metabolismo , Ligação Proteica , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
2.
Pharmacogenomics J ; 23(6): 169-177, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689822

RESUMO

Adverse drug events (ADEs) account for a significant mortality, morbidity, and cost burden. Pharmacogenetic testing has the potential to reduce ADEs and inefficacy. The objective of this INGENIOUS trial (NCT02297126) analysis was to determine whether conducting and reporting pharmacogenetic panel testing impacts ADE frequency. The trial was a pragmatic, randomized controlled clinical trial, adapted as a propensity matched analysis in individuals (N = 2612) receiving a new prescription for one or more of 26 pharmacogenetic-actionable drugs across a community safety-net and academic health system. The intervention was a pharmacogenetic testing panel for 26 drugs with dosage and selection recommendations returned to the health record. The primary outcome was occurrence of ADEs within 1 year, according to modified Common Terminology Criteria for Adverse Events (CTCAE). In the propensity-matched analysis, 16.1% of individuals experienced any ADE within 1-year. Serious ADEs (CTCAE level ≥ 3) occurred in 3.2% of individuals. When combining all 26 drugs, no significant difference was observed between the pharmacogenetic testing and control arms for any ADE (Odds ratio 0.96, 95% CI: 0.78-1.18), serious ADEs (OR: 0.91, 95% CI: 0.58-1.40), or mortality (OR: 0.60, 95% CI: 0.28-1.21). However, sub-group analyses revealed a reduction in serious ADEs and death in individuals who underwent pharmacogenotyping for aripiprazole and serotonin or serotonin-norepinephrine reuptake inhibitors (OR 0.34, 95% CI: 0.12-0.85). In conclusion, no change in overall ADEs was observed after pharmacogenetic testing. However, limitations incurred during INGENIOUS likely affected the results. Future studies may consider preemptive, rather than reactive, pharmacogenetic panel testing.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Testes Farmacogenômicos , Humanos , Aripiprazol , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Norepinefrina , Serotonina
3.
Genet Med ; 24(4): 759-768, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35177334

RESUMO

Pharmacogenomic testing interrogates germline sequence variants implicated in interindividual drug response variability to infer a drug response phenotype and to guide medication management for certain drugs. Specifically, discrete aspects of pharmacokinetics, such as drug metabolism, and pharmacodynamics, as well as drug sensitivity, can be predicted by genes that code for proteins involved in these pathways. Pharmacogenomics is unique and differs from inherited disease genetics because the drug response phenotype can be drug-dependent and is often unrecognized until an unexpected drug reaction occurs or a patient fails to respond to a medication. Genes and variants with sufficiently high levels of evidence and consensus may be included in a clinical pharmacogenomic test; however, result interpretation and phenotype prediction can be challenging for some genes and medications. This document provides a resource for laboratories to develop and implement clinical pharmacogenomic testing by summarizing publicly available resources and detailing best practices for pharmacogenomic nomenclature, testing, result interpretation, and reporting.


Assuntos
Genética Médica , Testes Farmacogenômicos , Genômica , Humanos , Farmacogenética , Fenótipo , Estados Unidos
4.
Genet Med ; 23(12): 2335-2341, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34282303

RESUMO

PURPOSE: The increased availability of clinical pharmacogenetic (PGx) guidelines and decreasing costs for genetic testing have slowly led to increased utilization of PGx testing in clinical practice. Pre-emptive PGx testing, where testing is performed in advance of drug prescribing, is one means to ensure results are available at the time of prescribing decisions. However, the most efficient and effective methods to clinically implement this strategy remain unclear. METHODS: In this report, we compare and contrast implementation strategies for pre-emptive PGx testing by 15 early-adopter institutions. We surveyed these groups, collecting data on testing approaches, team composition, and workflow dynamics, in addition to estimated third-party reimbursement rates. RESULTS: We found that while pre-emptive PGx testing models varied across sites, institutions shared several commonalities, including methods to identify patients eligible for testing, involvement of a precision medicine clinical team in program leadership, and the implementation of pharmacogenes with Clinical Pharmacogenetics Implementation Consortium guidelines available. Finally, while reimbursement rate data were difficult to obtain, the data available suggested that reimbursement rates for pre-emptive PGx testing remain low. CONCLUSION: These findings should inform the establishment of future implementation efforts at institutions considering a pre-emptive PGx testing program.


Assuntos
Farmacogenética , Testes Farmacogenômicos , Prescrições de Medicamentos , Testes Genéticos , Humanos , Farmacogenética/métodos , Medicina de Precisão/métodos
5.
Genet Med ; 23(7): 1185-1191, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33782552

RESUMO

PURPOSE: A critical gap in the adoption of genomic medicine into medical practice is the need for the rigorous evaluation of the utility of genomic medicine interventions. METHODS: The Implementing Genomics in Practice Pragmatic Trials Network (IGNITE PTN) was formed in 2018 to measure the clinical utility and cost-effectiveness of genomic medicine interventions, to assess approaches for real-world application of genomic medicine in diverse clinical settings, and to produce generalizable knowledge on clinical trials using genomic interventions. Five clinical sites and a coordinating center evaluated trial proposals and developed working groups to enable their implementation. RESULTS: Two pragmatic clinical trials (PCTs) have been initiated, one evaluating genetic risk APOL1 variants in African Americans in the management of their hypertension, and the other to evaluate the use of pharmacogenetic testing for medications to manage acute and chronic pain as well as depression. CONCLUSION: IGNITE PTN is a network that carries out PCTs in genomic medicine; it is focused on diversity and inclusion of underrepresented minority trial participants; it uses electronic health records and clinical decision support to deliver the interventions. IGNITE PTN will develop the evidence to support (or oppose) the adoption of genomic medicine interventions by patients, providers, and payers.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Genômica , Apolipoproteína L1 , Registros Eletrônicos de Saúde , Humanos , Testes Farmacogenômicos , Medicina de Precisão
7.
Drug Metab Dispos ; 48(3): 169-175, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31888882

RESUMO

Chronic administration of efavirenz is associated with decreased serum bilirubin levels, probably through induction of UGT1A1 We assessed the impact of efavirenz monotherapy and UGT1A1 phenotypes on total, conjugated, and unconjugated serum bilirubin levels in healthy volunteers. Healthy volunteers were enrolled into a clinical study designed to address efavirenz pharmacokinetics, drug interactions, and pharmacogenetics. Volunteers received multiple oral doses (600 mg/day for 17 days) of efavirenz. Serum bilirubin levels were obtained at study entry and 1 week after completion of the study. DNA genotyping was performed for UGT1A1 [*80 (C>T), *6 (G>A), *28 (TA7), *36 (TA5), and *37 (TA8)] and for SLCO1B1 [*5 (521T>C) and *1b (388A>G] variants. Diplotype predicted phenotypes were classified as normal, intermediate, and slow metabolizers. Compared with bilirubin levels at screening, treatment with efavirenz significantly reduced total, conjugated, and unconjugated bilirubin. After stratification by UGT1A1 phenotypes, there was a significant decrease in total bilirubin among all phenotypes, conjugated bilirubin among intermediate metabolizers, and unconjugated bilirubin among normal and intermediate metabolizers. The data also show that UGT1A1 genotype predicts serum bilirubin levels at baseline, but this relationship is lost after efavirenz treatment. SLCO1B1 genotypes did not predict bilirubin levels at baseline or after efavirenz treatment. Our data suggest that efavirenz may alter bilirubin disposition mainly through induction of UGT1A1 metabolism and efflux through multidrug resistance-associated protein 2. SIGNIFICANCE STATEMENT: Efavirenz likely alters the pharmacokinetics of coadministered drugs, potentially causing lack of efficacy or increased adverse effects, as well as the disposition of endogenous compounds relevant in homeostasis through upregulation of UGT1A1 and multidrug resistance-associated protein 2. Measurement of unconjugated and conjugated bilirubin during new drug development may provide mechanistic understanding regarding enzyme and transporters modulated by the new drug.


Assuntos
Alcinos/farmacologia , Benzoxazinas/farmacologia , Bilirrubina/metabolismo , Ciclopropanos/farmacologia , Glucuronosiltransferase/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Polimorfismo de Nucleotídeo Único/genética , Adolescente , Adulto , Feminino , Genótipo , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Fenótipo , Adulto Jovem
8.
Am J Med Genet A ; 182(11): 2501-2507, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32869452

RESUMO

EVEN-PLUS syndrome is a rare condition characterized by its involvement of the Epiphyses, Vertebrae, Ears, and Nose, PLUS other associated findings. We report here the fifth case of EVEN-PLUS syndrome with novel variants c.818 T > G (p.L273X) and c.955C > T (p.L319F) in the HSPA9 gene identified through whole-exome sequencing. The patient is the first male known to be affected and presented with additional features not previously described with EVEN-PLUS syndrome. These features include agenesis of the septum pellucidum, a short chest and sternum, 13 pairs of ribs, a single hemivertebra, laterally displaced nipples, hydronephrosis, unilateral cryptorchidism, unilateral single palmar crease, bilateral clubfoot, and hypotonia. qPCR analysis provides supporting evidence for a nonsense-mediated decay mechanism for the HSPA9 truncating variant. In silico 3D modeling supports the pathogenicity of the c.955C > T (p.L319F) missense variant. The study presented here further describes the syndrome and broadens its mutational and phenotypic spectrum. Our study also lends support to HSPA9 variants as the underlying etiology of EVEN-PLUS syndrome and ultimately provides a better understanding of the molecular basis of the condition.


Assuntos
Proteínas de Choque Térmico HSP70/genética , Proteínas Mitocondriais/genética , Anormalidades Musculoesqueléticas/genética , Mutação de Sentido Incorreto , Septo Pelúcido/patologia , Pé Torto Equinovaro/complicações , Criptorquidismo/complicações , Exoma , Estudos de Associação Genética , Variação Genética , Humanos , Hidronefrose/complicações , Imageamento Tridimensional , Lactente , Cariotipagem , Masculino , Hipotonia Muscular/complicações , Mutação , Fenótipo , RNA Mensageiro/metabolismo , Costelas/anormalidades , Septo Pelúcido/anormalidades , Esterno/anormalidades , Síndrome , Sequenciamento do Exoma
9.
Pharmacogenet Genomics ; 29(1): 18-22, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30489456

RESUMO

Hypertension and chronic kidney disease are inextricably linked. Hypertension is a well-recognized contributor to chronic kidney disease progression and, in turn, renal disease potentiates hypertension. A generalized approach to drug selection and dosage has not proven effective in managing these conditions, in part, because patients with heterogeneous kidney disease and hypertension etiologies are frequently grouped according to functional or severity classifications. Genetic testing may serve as an important tool in the armamentarium of clinicians who embrace precision medicine. Increasing scientific evidence has supported the utilization of genomic information to select efficacious antihypertensive therapy and understand hereditary contributors to chronic kidney disease progression. Given the wide array of antihypertensive agents available and diversity of genetic renal disease predictors, a panel-based approach to genotyping may be an efficient and economic means of establishing an individualized blood pressure response profile for patients with various forms of chronic kidney disease and hypertension. In this manuscript, we discuss the validation process of a Clinical Laboratory Improvement Amendments-approved genetic test to relay information on 72 genetic variants associated with kidney disease progression and hypertension therapy. These genomic-based interventions, in addition to routine clinical data, may help inform physicians to provide personalized therapy.


Assuntos
Hipertensão/tratamento farmacológico , Variantes Farmacogenômicos , Insuficiência Renal Crônica/tratamento farmacológico , Anti-Hipertensivos/uso terapêutico , Técnicas de Genotipagem , Humanos , Hipertensão/genética , Assistência Centrada no Paciente , Medicina de Precisão , Insuficiência Renal Crônica/genética
10.
Genet Med ; 21(2): 382-390, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29858578

RESUMO

PURPOSE: The Veterans Health Administration (VHA) Clinical Pharmacogenetics Subcommittee is charged with making recommendations about whether specific pharmacogenetic tests should be used in healthcare at VHA facilities. We describe a process to inform VHA pharmacogenetic testing policy. METHODS: After developing consensus definitions of clinical validity and utility, the Subcommittee identified salient drug-gene pairs with potential clinical application in VHA. Members met monthly to discuss each drug-gene pair, the evidence of clinical utility for the associated pharmacogenetic test, and any VHA-specific testing considerations. The Subcommittee classified each test as strongly recommended, recommended, or not routinely recommended before drug initiation. RESULTS: Of 30 drug-gene pair tests reviewed, the Subcommittee classified 4 (13%) as strongly recommended, including HLA-B*15:02 for carbamazepine-associated Stevens-Johnston syndrome and G6PD for rasburicase-associated hemolytic anemia; 12 (40%) as recommended, including CYP2D6 for codeine toxicity; and 14 (47%) as not routinely recommended, such as CYP2C19 for clopidogrel dosing. CONCLUSION: Only half of drug-gene pairs with high clinical validity received Subcommittee support for policy promoting their widespread use across VHA. The Subcommittee generally found insufficient evidence of clinical utility or available, effective alternative strategies for the remainders. Continual evidence review and rigorous outcomes research will help promote the translation of pharmacogenetic discovery to healthcare.


Assuntos
Clopidogrel/efeitos adversos , Farmacogenética/estatística & dados numéricos , Síndrome de Stevens-Johnson/epidemiologia , Saúde dos Veteranos/estatística & dados numéricos , Clopidogrel/uso terapêutico , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Genótipo , Glucosefosfato Desidrogenase/genética , Antígeno HLA-B15/genética , Humanos , Testes Farmacogenômicos , Síndrome de Stevens-Johnson/genética , Estados Unidos , United States Department of Veterans Affairs/estatística & dados numéricos , Veteranos
11.
Genet Med ; 21(3): 743-747, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29997387

RESUMO

PURPOSE: While there is growing scientific evidence for and significant advances in the use of genomic technologies in medicine, there is a significant lag in the clinical adoption and sustainability of genomic medicine. Here we describe the findings from the National Human Genome Research Institute's (NHGRI) Implementing GeNomics In pracTicE (IGNITE) Network in identifying key constructs, opportunities, and challenges associated with driving sustainability of genomic medicine in clinical practice. METHODS: Network members and affiliates were surveyed to identify key drivers associated with implementing and sustaining a genomic medicine program. Tallied results were used to develop and weigh key constructs/drivers required to support sustainability of genomic medicine programs. RESULTS: The top three driver-stakeholder dyads were (1) genomic training for providers, (2) genomic clinical decision support (CDS) tools embedded in the electronic health record (EHR), and (3) third party reimbursement for genomic testing. CONCLUSION: Priorities may differ depending on healthcare systems when comparing the current state of key drivers versus projected needs for supporting genomic medicine sustainability. Thus we provide gap-filling guidance based on IGNITE members' experiences. Although results are limited to findings from the IGNITE network, their implementation, scientific, and clinical experience may be used as a road map by others considering implementing genomic medicine programs.


Assuntos
Medicina de Precisão/métodos , Sistemas de Apoio a Decisões Clínicas , Atenção à Saúde , Registros Eletrônicos de Saúde , Genômica/métodos , Humanos , National Human Genome Research Institute (U.S.)/normas , Inquéritos e Questionários , Estados Unidos
12.
Genet Med ; 21(7): 1670, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30158693

RESUMO

The original version of this Article contained an error in the spelling of the author Geoffrey S. Ginsburg, which was incorrectly given as Geoffrey Ginsburg. This has now been corrected in both the PDF and HTML versions of the Article.

13.
Genet Med ; 21(10): 2255-2263, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30894703

RESUMO

PURPOSE: A number of institutions have clinically implemented CYP2D6 genotyping to guide drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, barriers faced by both early adopters and institutions in the process of implementing CYP2D6 testing, and approaches taken to overcome these barriers. METHODS: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the process of adoption. Data were collected on testing approaches, return of results procedures, applications of genotype results, challenges faced, and lessons learned. RESULTS: Among early adopters, CYP2D6 testing was most commonly ordered to assist with opioid and antidepressant prescribing. Key differences among programs included test ordering and genotyping approaches, result reporting, and clinical decision support. However, all sites tested for copy-number variation and nine common variants, and reported results in the medical record. Most sites provided automatic consultation and had designated personnel to assist with genotype-informed therapy recommendations. Primary challenges were related to stakeholder support, CYP2D6 gene complexity, phenotype assignment, and sustainability. CONCLUSION: There are specific challenges unique to CYP2D6 testing given the complexity of the gene and its relevance to multiple medications. Consensus lessons learned may guide those interested in pursuing similar clinical pharmacogenetic programs.


Assuntos
Citocromo P-450 CYP2D6/genética , Testes Genéticos/métodos , Farmacogenética/métodos , Citocromo P-450 CYP2D6/farmacologia , Sistemas de Apoio a Decisões Clínicas , Prescrições de Medicamentos/normas , Genótipo , Humanos , Testes Farmacogenômicos/métodos , Testes Farmacogenômicos/tendências , Fenótipo
14.
Am J Med Genet A ; 179(12): 2357-2364, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31512387

RESUMO

Coffin-Lowry syndrome (CLS) is a rare X-linked disorder characterized by moderate to severe intellectual disability, hypotonia, craniofacial features, tapering digits, short stature, and skeletal deformities. Using whole exome sequencing and high-resolution targeted comparative genomic hybridization array analysis, we identified a novel microduplication encompassing exons five through nine of RPS6KA3 in three full brothers. Each brother presented with intellectual disability and clinical and radiographic features consistent with CLS. qRT-PCR analyses performed on mRNA from the peripheral blood of the three siblings revealed a marked reduction of RPS6KA3 levels suggesting a loss-of-function mechanism. PCR analysis of the patients' cDNA detected a band greater than expected for an exon 4-10 amplicon, suggesting this was likely a direct duplication that lies between exons 4 through 10, which was later confirmed by Sanger sequencing. This microduplication is only the third intragenic duplication of RPS6KA3, and the second and smallest reported to date thought to cause CLS. Our study further supports the clinical utility of methods such as next-generation sequencing and high-resolution genomic arrays to detect small intragenic duplications. These methods, coupled with expression studies and cDNA structural analysis have the capacity to confirm the diagnosis of CLS in these rare cases.


Assuntos
Duplicação Cromossômica , Síndrome de Coffin-Lowry/diagnóstico , Síndrome de Coffin-Lowry/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Irmãos , Criança , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação , Linhagem , Fenótipo
15.
Value Health ; 20(1): 54-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28212969

RESUMO

OBJECTIVES: Implementing new programs to support precision medicine in clinical settings is a complex endeavor. We describe challenges and potential solutions based on the Indiana GENomics Implementation: an Opportunity for the Underserved (INGenious) program at Eskenazi Health-one of six sites supported by the Implementing GeNomics In pracTicE network grant of the National Institutes of Health/National Human Genome Research Institute. INGenious is an implementation of a panel of genomic tests. METHODS: We conducted a descriptive case study of the implementation of this pharmacogenomics program, which has a wide scope (14 genes, 27 medications) and a diverse population (patients who often have multiple chronic illnesses, in a large urban safety-net hospital and its outpatient clinics). CHALLENGES: We placed the clinical pharmacogenomics implementation challenges into six categories: patient education and engagement in care decision making; clinician education and changes in standards of care; integration of technology into electronic health record systems; translational and implementation sciences in real-world clinical environments; regulatory and reimbursement considerations, and challenges in measuring outcomes. A cross-cutting theme was the need for careful attention to workflow. Our clinical setting, a safety-net health care system, presented some distinctive challenges. Patients often had multiple chronic illnesses and sometimes were taking more than one pharmacogenomics-relevant medication. Reaching patients for recruitment or follow-up was another challenge. CONCLUSIONS: New, large-scale endeavors in health care are challenging. A description of the challenges that we encountered and the approaches that we adopted to address them may provide insights for those who implement and study innovations in other health care systems.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Registros Eletrônicos de Saúde/organização & administração , Testes Farmacogenômicos/métodos , Medicina de Precisão/métodos , Integração de Sistemas , Humanos , Reembolso de Seguro de Saúde , National Institutes of Health (U.S.) , Avaliação de Resultados em Cuidados de Saúde , Educação de Pacientes como Assunto/organização & administração , Participação do Paciente/métodos , Projetos de Pesquisa , Provedores de Redes de Segurança/organização & administração , Estados Unidos , Fluxo de Trabalho
16.
Bioinformatics ; 31(12): i27-34, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26072492

RESUMO

MOTIVATION: CYP2D6 is highly polymorphic gene which encodes the (CYP2D6) enzyme, involved in the metabolism of 20-25% of all clinically prescribed drugs and other xenobiotics in the human body. CYP2D6 genotyping is recommended prior to treatment decisions involving one or more of the numerous drugs sensitive to CYP2D6 allelic composition. In this context, high-throughput sequencing (HTS) technologies provide a promising time-efficient and cost-effective alternative to currently used genotyping techniques. To achieve accurate interpretation of HTS data, however, one needs to overcome several obstacles such as high sequence similarity and genetic recombinations between CYP2D6 and evolutionarily related pseudogenes CYP2D7 and CYP2D8, high copy number variation among individuals and short read lengths generated by HTS technologies. RESULTS: In this work, we present the first algorithm to computationally infer CYP2D6 genotype at basepair resolution from HTS data. Our algorithm is able to resolve complex genotypes, including alleles that are the products of duplication, deletion and fusion events involving CYP2D6 and its evolutionarily related cousin CYP2D7. Through extensive experiments using simulated and real datasets, we show that our algorithm accurately solves this important problem with potential clinical implications. AVAILABILITY AND IMPLEMENTATION: Cypiripi is available at http://sfu-compbio.github.io/cypiripi.


Assuntos
Citocromo P-450 CYP2D6/classificação , Citocromo P-450 CYP2D6/genética , Variações do Número de Cópias de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo Genético/genética , Software , Alelos , Genótipo , Humanos , Pseudogenes
20.
J Clin Oncol ; 42(10): 1181-1192, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38386947

RESUMO

Pharmacogenomics (PGx), the study of inherited genomic variation and drug response or safety, is a vital tool in precision medicine. In oncology, testing to identify PGx variants offers patients the opportunity for customized treatments that can minimize adverse effects and maximize the therapeutic benefits of drugs used for cancer treatment and supportive care. Because individuals of shared ancestry share specific genetic variants, PGx factors may contribute to outcome disparities across racial and ethnic categories when genetic ancestry is not taken into account or mischaracterized in PGx research, discovery, and application. Here, we examine how the current scientific understanding of the role of PGx in differential oncology safety and outcomes may be biased toward a greater understanding and more complete clinical implementation of PGx for individuals of European descent compared with other genetic ancestry groups. We discuss the implications of this bias for PGx discovery, access to care, drug labeling, and patient and provider understanding and use of PGx approaches. Testing for somatic genetic variants is now the standard of care in treatment of many solid tumors, but the integration of PGx into oncology care is still lacking despite demonstrated actionable findings from PGx testing, reduction in avoidable toxicity and death, and return on investment from testing. As the field of oncology is poised to expand and integrate germline genetic variant testing, it is vital that PGx discovery and application are equitable for all populations. Recommendations are introduced to address barriers to facilitate effective and equitable PGx application in cancer care.


Assuntos
Testes Farmacogenômicos , Medicina de Precisão , Humanos , Farmacogenética , Testes Genéticos , Oncologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA