Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Ecol ; 89(5): 1216-1229, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32096554

RESUMO

Aphid populations frequently include phenotypes that are resistant to parasitism by hymenopterous parasitoid wasps, which is often attributed to the presence of 'protective' facultative endosymbionts residing in aphid tissues, particularly Hamiltonella defensa. In field conditions, under parasitoid pressure, the observed coexistence of aphids with and without protective symbionts cannot be explained by their difference in fitness alone. Using the cereal aphid Rhopalosiphum padi as a model, we propose an alternative mechanism whereby parasitoids are more efficient at finding common phenotypes of aphid and experience a fitness cost when switching to the less common phenotype. We construct a model based on delay differential equations and parameterize and validate the model with values within the ranges obtained from experimental studies. We then use it to explore the possible effects on system dynamics under conditions of environmental stress, using our existing data on the effects of drought stress in crops as an example. We show the 'switching penalty' incurred by parasitoids leads to stable coexistence of aphids with and without H. defensa and provides a potential mechanism for maintaining phenotypic diversity among host organisms. We show that drought-induced reduction in aphid development time has little impact. However, greater reduction in fecundity on droughted plants of symbiont-protected aphids can cause insect population cycles when the system would be stable in the absence of drought stress. The stabilizing effect of the increased efficiency in dealing with more commonly encountered host phenotypes is applicable to a broad range of consumer-resource systems and could explain stable coexistence in competitive environments. The loss of stable coexistence when drought has different effects on the competing aphid phenotypes highlights the importance of scenario testing when considering biocontrol for pest management.


Assuntos
Afídeos , Vespas , Animais , Enterobacteriaceae , Fenótipo , Estresse Fisiológico , Simbiose
2.
Ecol Evol ; 11(17): 11915-11929, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34522350

RESUMO

Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid-plant interactions are unclear.Using a meta-analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group and to characterize any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to (a) aphid biology, (b) geographical region, and (c) host plant biology.Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid-plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigor and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigor and increased chemical defense in drought-stressed plants.We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigor and defense to stimulate further research.

3.
J Theor Biol ; 262(3): 441-51, 2010 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-19837087

RESUMO

All animals and plants are, to some extent, susceptible to disease caused by varying combinations of parasites, viruses and bacteria. In this paper, we develop a mathematical model of contact spread infection to investigate the effect of introducing a parasitoid-vectored infection into a one-host-two-parasitoid competition model. We use a system of ordinary differential equations to investigate the separate influences of horizontal and vertical pathogen transmission on a model system appropriate for a variety of competitive situations. Computational simulations and steady-state analysis show that the transient and long-term dynamics exhibited under contact spread infection are highly complex. Horizontal pathogen transmission has a stabilising effect on the system whilst vertical transmission can destabilise it to the point of chaotic fluctuations in population levels. This has implications when considering the introduction of host pathogens for the control of insect vectored diseases such as bovine tuberculosis or yellow fever.


Assuntos
Interações Hospedeiro-Parasita , Transmissão Vertical de Doenças Infecciosas/veterinária , Modelos Biológicos , Doenças Parasitárias em Animais/transmissão , Animais , Bovinos
4.
J R Soc Interface ; 4(14): 463-71, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17251140

RESUMO

All animals and plants are, to some extent, susceptible to disease caused by varying combinations of parasites, viruses and bacteria. In this paper, we present a mathematical model of interactions between a host, two parasitoids and a pathogen which shows that the presence of an infection can preserve and promote diversity in such multi-species systems. Initially, we use a system of ordinary differential equations to investigate interactions between two species of parasitoids, a host and a host infection. We show that the presence of all four species is necessary for the system as a whole to persist, and that in particular, the presence of the pathogen is necessary for the coexistence of the two parasitoid species. The inclusion of infection induces a wide range of dynamics, including chaos, and these dynamics are robust for a wide range of parameter values. We then extend the model to include spatial effects by introducing random motility (diffusion) of all three species and examine the subsequent spatio-temporal dynamics, including travelling waves and other more complicated heterogeneous behaviour. The computational simulation results of the model suggest that infection in the hosts can blunt the effects of competition between parasitoids, allowing the weaker competitor to survive. Regardless of the nature of the stability of the coexistent steady state of the system, there is an initial period of transient dynamics, the length of which can be extended by an appropriate choice of initial conditions. The existence of these transient dynamics suggests that systems subject to regular restoration to a starting state, such as agro-ecosystems, may be kept in a continual state of dynamic transience, and this has implications for the use of natural enemies to control insect pests, the preservation of biodiversity in farmland habitats and the more general dynamics of disease processes.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Modelos Biológicos , Animais , Modelos Teóricos , Dinâmica não Linear , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA