Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(7): 1666-1684.e26, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38490194

RESUMO

Diminished hepatocyte regeneration is a key feature of acute and chronic liver diseases and after extended liver resections, resulting in the inability to maintain or restore a sufficient functional liver mass. Therapies to restore hepatocyte regeneration are lacking, making liver transplantation the only curative option for end-stage liver disease. Here, we report on the structure-based development and characterization (nuclear magnetic resonance [NMR] spectroscopy) of first-in-class small molecule inhibitors of the dual-specificity kinase MKK4 (MKK4i). MKK4i increased liver regeneration upon hepatectomy in murine and porcine models, allowed for survival of pigs in a lethal 85% hepatectomy model, and showed antisteatotic and antifibrotic effects in liver disease mouse models. A first-in-human phase I trial (European Union Drug Regulating Authorities Clinical Trials [EudraCT] 2021-000193-28) with the clinical candidate HRX215 was conducted and revealed excellent safety and pharmacokinetics. Clinical trials to probe HRX215 for prevention/treatment of liver failure after extensive oncological liver resections or after transplantation of small grafts are warranted.


Assuntos
Inibidores Enzimáticos , Falência Hepática , MAP Quinase Quinase 4 , Animais , Humanos , Camundongos , Hepatectomia/métodos , Hepatócitos , Fígado , Hepatopatias/tratamento farmacológico , Falência Hepática/tratamento farmacológico , Falência Hepática/prevenção & controle , Regeneração Hepática , Suínos , MAP Quinase Quinase 4/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico
2.
Cell ; 145(1): 145-58, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21458673

RESUMO

RNA interference is a powerful tool for studying gene function, however, the reproducible generation of RNAi transgenic mice remains a significant limitation. By combining optimized fluorescence-coupled miR30-based shRNAs with high efficiency ES cell targeting, we developed a fast, scalable pipeline for the production of shRNA transgenic mice. Using this system, we generated eight tet-regulated shRNA transgenic lines targeting Firefly and Renilla luciferases, Oct4 and tumor suppressors p53, p16(INK4a), p19(ARF) and APC and demonstrate potent gene silencing and GFP-tracked knockdown in a broad range of tissues in vivo. Further, using an shRNA targeting APC, we illustrate how this approach can identify predicted phenotypes and also unknown functions for a well-studied gene. In addition, through regulated gene silencing we validate APC/Wnt and p19(ARF) as potential therapeutic targets in T cell acute lymphoblastic leukemia/lymphoma and lung adenocarcinoma, respectively. This system provides a cost-effective and scalable platform for the production of RNAi transgenic mice targeting any mammalian gene. PAPERCLIP:


Assuntos
Técnicas de Silenciamento de Genes/métodos , Interferência de RNA , Adenocarcinoma/genética , Adenocarcinoma/terapia , Animais , Células-Tronco Embrionárias/metabolismo , Técnicas de Silenciamento de Genes/economia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteínas Wnt/metabolismo
3.
Nature ; 510(7505): 402-6, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24805236

RESUMO

PTEN encodes a lipid phosphatase that is underexpressed in many cancers owing to deletions, mutations or gene silencing. PTEN dephosphorylates phosphatidylinositol (3,4,5)-triphosphate, thereby opposing the activity of class I phosphatidylinositol 3-kinases that mediate growth- and survival-factor signalling through phosphatidylinositol 3-kinase effectors such as AKT and mTOR. To determine whether continued PTEN inactivation is required to maintain malignancy, here we generate an RNA interference-based transgenic mouse model that allows tetracycline-dependent regulation of PTEN in a time- and tissue-specific manner. Postnatal Pten knockdown in the haematopoietic compartment produced highly disseminated T-cell acute lymphoblastic leukaemia. Notably, reactivation of PTEN mainly reduced T-cell leukaemia dissemination but had little effect on tumour load in haematopoietic organs. Leukaemia infiltration into the intestine was dependent on CCR9 G-protein-coupled receptor signalling, which was amplified by PTEN loss. Our results suggest that in the absence of PTEN, G-protein-coupled receptors may have an unanticipated role in driving tumour growth and invasion in an unsupportive environment. They further reveal that the role of PTEN loss in tumour maintenance is not invariant and can be influenced by the tissue microenvironment, thereby producing a form of intratumoral heterogeneity that is independent of cancer genotype.


Assuntos
Leucemia/enzimologia , Leucemia/fisiopatologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Microambiente Tumoral/fisiologia , Animais , Quimiocinas/metabolismo , Técnicas de Silenciamento de Genes , Leucemia/genética , Camundongos Transgênicos , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
4.
Genes Dev ; 25(20): 2125-36, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21979375

RESUMO

Cellular senescence acts as a potent barrier to tumorigenesis and contributes to the anti-tumor activity of certain chemotherapeutic agents. Senescent cells undergo a stable cell cycle arrest controlled by RB and p53 and, in addition, display a senescence-associated secretory phenotype (SASP) involving the production of factors that reinforce the senescence arrest, alter the microenvironment, and trigger immune surveillance of the senescent cells. Through a proteomics analysis of senescent chromatin, we identified the nuclear factor-κB (NF-κB) subunit p65 as a major transcription factor that accumulates on chromatin of senescent cells. We found that NF-κB acts as a master regulator of the SASP, influencing the expression of more genes than RB and p53 combined. In cultured fibroblasts, NF-κB suppression causes escape from immune recognition by natural killer (NK) cells and cooperates with p53 inactivation to bypass senescence. In a mouse lymphoma model, NF-κB inhibition bypasses treatment-induced senescence, producing drug resistance, early relapse, and reduced survival. Our results demonstrate that NF-κB controls both cell-autonomous and non-cell-autonomous aspects of the senescence program and identify a tumor-suppressive function of NF-κB that contributes to the outcome of cancer therapy.


Assuntos
Senescência Celular/fisiologia , Resistência a Medicamentos/fisiologia , Fenótipo , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma/metabolismo , Camundongos , Inibidores da Síntese de Proteínas/farmacologia , RNA Interferente Pequeno/metabolismo , Tetraciclina/farmacologia , Proteína Supressora de Tumor p53/metabolismo
6.
J Am Soc Nephrol ; 26(10): 2361-77, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25644109

RESUMO

Nephrin is required during kidney development for the maturation of podocytes and formation of the slit diaphragm junctional complex. Because nephrin expression is downregulated in acquired glomerular diseases, nephrin deficiency is considered a pathologic feature of glomerular injury. However, whether nephrin deficiency exacerbates glomerular injury in glomerular diseases has not been experimentally confirmed. Here, we generated mice with inducible RNA interference-mediated nephrin knockdown. Short-term nephrin knockdown (6 weeks), starting after the completion of kidney development at 5 weeks of age, did not affect glomerular structure or function. In contrast, mice with long-term nephrin knockdown (20 weeks) developed mild proteinuria, foot process effacement, filtration slit narrowing, mesangial hypercellularity and sclerosis, glomerular basement membrane thickening, subendothelial zone widening, and podocyte apoptosis. When subjected to an acquired glomerular insult induced by unilateral nephrectomy or doxorubicin, mice with short-term nephrin knockdown developed more severe glomerular injury compared with mice without nephrin knockdown. Additionally, nephrin-knockdown mice developed more exaggerated glomerular enlargement when subjected to unilateral nephrectomy and more podocyte apoptosis and depletion after doxorubicin challenge. AKT phosphorylation, which is a slit diaphragm-mediated and nephrin-dependent pathway in the podocyte, was markedly reduced in mice with long-term or short-term nephrin knockdown challenged with uninephrectomy or doxorubicin. Taken together, our data establish that under the basal condition and in acquired glomerular diseases, nephrin is required to maintain slit diaphragm integrity and slit diaphragm-mediated signaling to preserve glomerular function and podocyte viability in adult mice.


Assuntos
Glomérulos Renais/anatomia & histologia , Glomérulos Renais/fisiologia , Proteínas de Membrana/fisiologia , Podócitos/citologia , Podócitos/fisiologia , Fatores Etários , Animais , Sobrevivência Celular , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos
7.
Nat Genet ; 39(7): 914-21, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17572676

RESUMO

Genetically engineered mice provide powerful tools for understanding mammalian gene function. These models traditionally rely on gene overexpression from transgenes or targeted, irreversible gene mutation. By adapting the tetracycline (tet)-responsive system previously used for gene overexpression, we have developed a simple transgenic system to reversibly control endogenous gene expression using RNA interference (RNAi) in mice. Transgenic mice harboring a tet-responsive RNA polymerase II promoter driving a microRNA-based short hairpin RNA targeting the tumor suppressor Trp53 reversibly express short hairpin RNA when crossed with existing mouse strains expressing general or tissue-specific 'tet-on' or 'tet-off' transactivators. Reversible Trp53 knockdown can be achieved in several tissues, and restoring Trp53 expression in lymphomas whose development is promoted by Trp53 knockdown leads to tumor regression. By leaving the target gene unaltered, this approach permits tissue-specific, reversible regulation of endogenous gene expression in vivo, with potential broad application in basic biology and drug target validation.


Assuntos
Especificidade de Órgãos/genética , Animais , Sistemas de Liberação de Medicamentos , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Interferência de RNA/fisiologia , Tetraciclina
8.
Am J Pathol ; 184(7): 1940-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24952428

RESUMO

The silent mating type information regulation 2 homolog 1 gene (Sirt1) encodes an NAD-dependent deacetylase that modifies the activity of well-known transcriptional regulators affected in kidney diseases. Sirt1 is expressed in the kidney podocyte, but its function in the podocyte is not clear. Genetically engineered mice with inducible and reversible Sirt1 knockdown in widespread, podocyte-specific, or tubular-specific patterns were generated. We found that mice with 80% knockdown of renal Sirt1 expression have normal glomerular function under the basal condition. When challenged with doxorubicin (Adriamycin), these mice develop marked albuminuria, glomerulosclerosis, mitochondrial injury, and impaired autophagy of damaged mitochondria. Reversal of Sirt1 knockdown during the early phase of Adriamycin-induced nephropathy prevented the progression of glomerular injury and reduced the accumulation of dysmorphic mitochondria in podocytes but did not reverse the progression of albuminuria and glomerulosclerosis. Sirt1 knockdown mice with diabetes mellitus, which is known to cause mitochondrial dysfunction in the kidney, developed more albuminuria and mitochondrial dysfunction compared with diabetic mice without Sirt1 knockdown. In conclusion, these results demonstrate that our RNA interference-mediated Sirt1 knockdown models are valid and versatile tools for characterizing the function of Sirt1 in the kidney; Sirt1 plays a role in homeostatic maintenance of podocytes under the condition of mitochondrial stress/injury.


Assuntos
Modelos Animais de Doenças , Podócitos/citologia , Interferência de RNA , Sirtuína 1/metabolismo , Albuminúria , Animais , Autofagia , Linhagem Celular , Diabetes Mellitus Experimental/induzido quimicamente , Doxorrubicina , Técnicas de Silenciamento de Genes , Rim/citologia , Rim/metabolismo , Nefropatias/induzido quimicamente , Glomérulos Renais/citologia , Glomérulos Renais/metabolismo , Camundongos Knockout , Mitocôndrias/patologia , Podócitos/metabolismo , Sirtuína 1/genética
9.
Proc Natl Acad Sci U S A ; 108(17): 7113-8, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21482754

RESUMO

RNAi has revolutionized loss-of-function genetics by enabling sequence-specific suppression of virtually any gene. Furthermore, tetracycline response elements (TRE) can drive expression of short hairpin RNAs (shRNAs) for inducible and reversible target gene suppression. Here, we demonstrate the feasibility of transgenic inducible RNAi for suppression of essential genes. We set out to directly target cell proliferation by screening an RNAi library against DNA replication factors and identified multiple shRNAs against Replication Protein A, subunit 3 (RPA3). We generated transgenic mice with TRE-driven Rpa3 shRNAs whose expression enforced a reversible cell cycle arrest. In adult mice, the block in cell proliferation caused rapid atrophy of the intestinal epithelium which led to weight loss and lethality within 8-11 d of shRNA induction. Upon shRNA withdrawal, villus atrophy and weight loss were fully reversible. Thus, shRpa3 transgenic mice provide an interesting tool to study tissue maintenance and regeneration. Overall, we have established a robust system that serves the purpose of temperature-sensitive alleles in other model organisms, enabling inducible and reversible suppression of essential genes in a mammalian system.


Assuntos
Alelos , Ciclo Celular/fisiologia , Replicação do DNA/fisiologia , Interferência de RNA , Elementos de Resposta/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Proteína de Replicação A/metabolismo
10.
J Biol Chem ; 287(17): 13674-85, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22383529

RESUMO

Gα(o/i) interacts directly with GRIN (G protein-regulated inducer of neurite outgrowth). Using the yeast two-hybrid system, we identified Sprouty2 as an interacting partner of GRIN. Gα(o) and Sprouty2 bind to overlapping regions of GRIN, thus competing for GRIN binding. Imaging experiments demonstrated that Gα(o) expression promoted GRIN translocation to the plasma membrane, whereas Sprouty2 expression failed to do so. Given the role of Sprouty2 in the regulation of growth factor-mediated MAPK activation, we examined the contribution of the GRIN-Sprouty2 interaction to CB1 cannabinoid receptor regulation of FGF receptor signaling. In Neuro-2A cells, a system that expresses all of the components endogenously, modulation of GRIN levels led to regulation of MAPK activation. Overexpression of GRIN potentiated FGF activation of MAPK and decreased tyrosine phosphorylation of Sprouty2. Pretreatment with G(o/i)-coupled CB1 receptor agonist attenuated subsequent FGF activation of MAPK. Decreased expression of GRIN both diminished FGF activation of MAPK and blocked CB1R attenuation of MAPK activation. These observations indicate that Gα(o) interacts with GRIN and outcompetes GRIN from bound Sprouty. Free Sprouty then in turn inhibits growth factor signaling. Thus, here we present a novel mechanism of how G(o/i)-coupled receptors can inhibit growth factor signaling to MAPK.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Encéfalo/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Biblioteca Gênica , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Transdução de Sinais , Tirosina/química
11.
Sci Rep ; 13(1): 21093, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036581

RESUMO

Mpox is a neglected zoonotic disease endemic in West and Central Africa. The Mpox outbreak with more than 90,000 cases worldwide since 2022 generated great concern about future outbreaks and highlighted the need for a simple and rapid diagnostic test. The Mpox virus, MPV, is a member of the Orthopoxvirus (OPV) genus that also contains other pathogenic viruses including variola virus, vaccinia virus, camelpox virus, and cowpox virus. Phylogenomic analysis of 200 OPV genomes identified 10 distinct phylogroups with the New World OPVs placed on a very long branch distant from the Old World OPVs. Isolates derived from infected humans were found to be distributed across multiple phylogroups interspersed with isolates from animal sources, indicating the zoonotic potential of these viruses. In this study, we developed a simple and sensitive colorimetric LAMP assay for generic detection of Old World OPVs. We also developed an MPV-specific probe that differentiates MPV from other OPVs in the N1R LAMP assay. In addition, we described an extraction-free protocol for use directly with swab eluates in LAMP assays, thereby eliminating the time and resources needed to extract DNA from the sample. Our direct LAMP assays are well-suited for low-resource settings and provide a valuable tool for rapid and scalable diagnosis and surveillance of OPVs and MPV.


Assuntos
Mpox , Orthopoxvirus , Vírus da Varíola , Humanos , Animais , Orthopoxvirus/genética , Monkeypox virus/genética , Vírus da Varíola/genética
12.
Microorganisms ; 11(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38138084

RESUMO

The viral agent SARS-CoV-2 clearly affects several organ systems, including the cardiovascular system. Angiopoietins are involved in vascular integrity and angiogenesis. Angiopoietin-1 (Ang1) promotes vessel stabilization, while angiopoietin-2 (Ang2), which is usually expressed at low levels, is significantly elevated in inflammatory and angiogenic conditions. Interleukin-6 (IL-6) is known to induce defective angiogenesis via the activation of the Ang2 pathway. Vasculitis and vasculopathy are some of the defining features of moderate to severe COVID-19-associated systemic disease. We investigated the serum levels of angiopoietins, as well as interleukin-6 levels and anti-SARS-CoV2 IgG titers, in hospitalized COVID-19 patients across disease severity and healthy controls. Ang2 levels were elevated in COVID-19 patients across all severity compared to healthy controls, while Ang1 levels were decreased. The patients with adverse outcomes (death and/or prolonged hospitalization) had relatively lower and stable Ang1 levels but continuously elevated Ang2 levels, while those who had no adverse outcomes had increasing levels of both Ang1 and Ang2, followed by a decrease in both. These results suggest that the dynamic levels of Ang1 and Ang2 during the clinical course may predict adverse outcomes in COVID-19 patients. Ang1 seems to play an important role in controlling Ang2-related inflammatory mechanisms in COVID-19 patients. IL-6 and anti-SARS-CoV2 spike protein IgG levels were significantly elevated in patients with severe disease. Our findings represent an informative pilot assessment into the role of the angiopoietin signaling pathway in the inflammatory response in COVID-19.

13.
PLoS One ; 17(5): e0268692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617204

RESUMO

Effective management of the COVID-19 pandemic requires widespread and frequent testing of the population for SARS-CoV-2 infection. Saliva has emerged as an attractive alternative to nasopharyngeal samples for surveillance testing as it does not require specialized personnel or materials for its collection and can be easily provided by the patient. We have developed a simple, fast, and sensitive saliva-based testing workflow that requires minimal sample treatment and equipment. After sample inactivation, RNA is quickly released and stabilized in an optimized buffer, followed by reverse transcription loop-mediated isothermal amplification (RT-LAMP) and detection of positive samples using a colorimetric and/or fluorescent readout. The workflow was optimized using 1,670 negative samples collected from 172 different individuals over the course of 6 months. Each sample was spiked with 50 copies/µL of inactivated SARS-CoV-2 virus to monitor the efficiency of viral detection. Using pre-defined clinical samples, the test was determined to be 100% specific and 97% sensitive, with a limit of detection of 39 copies/mL. The method was successfully implemented in a CLIA laboratory setting for workplace surveillance and reporting. From April 2021-February 2022, more than 30,000 self-collected samples from 755 individuals were tested and 85 employees tested positive mainly during December and January, consistent with high infection rates in Massachusetts and nationwide.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pandemias , RNA Viral/genética , Saliva , Sensibilidade e Especificidade , Fluxo de Trabalho , Local de Trabalho
14.
Cancers (Basel) ; 13(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34638505

RESUMO

Colorectal cancer (CRC) is one of the most common malignancies in both morbidity and mortality. Immune checkpoint blockade (ICB) treatments have been successful in a portion of mismatch repair-deficient (dMMR) CRC patients but have failed in mismatch repair-proficient (pMMR) CRC patients. Atypical Chemokine Receptor 4 (ACKR4) is implicated in regulating dendritic cell (DC) migration. However, the roles of ACKR4 in CRC development and anti-tumor immunoregulation are not known. By analyzing human CRC tissues, transgenic animals, and genetically modified CRC cells lines, our study revealed an important function of ACKR4 in maintaining CRC immune response. Loss of ACKR4 in CRC is associated with poor immune infiltration in the tumor microenvironment. More importantly, loss of ACKR4 in CRC tumor cells, rather than stromal cells, restrains the DC migration and antigen presentation to the tumor-draining lymph nodes (TdLNs). Moreover, tumors with ACKR4 knockdown become less sensitive to immune checkpoint blockade. Finally, we identified that microRNA miR-552 negatively regulates ACKR4 expression in human CRC. Taken together, our studies identified a novel and crucial mechanism for the maintenance of the DC-mediated T-cell priming in the TdLNs. These new findings demonstrate a novel mechanism leading to immunosuppression and ICB treatment resistance in CRC.

15.
Heliyon ; 7(6): e07200, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34095559

RESUMO

More than 3.5 million people have died globally from COVID-19, yet an effective therapy is not available. It is, therefore, important to understand the signaling pathways that mediate disease progression in order to identify new molecular targets for therapeutic development. Here, we report that the blood serum levels of ephrin-A1 and the sheddase ADAM12 were significantly elevated in COVID-19 patients treated at SUNY Downstate Hospital of Brooklyn, New York. Both ephrin-A1 and ADAM12 are known to be involved in inflammation and regulate endothelial cell permeability, thus providing a gateway to lung injury. The clinical outcome correlated with the ephrin-A1 and ADAM12 serum levels during the first week of hospitalization. In contrast, the serum levels of TNFα were elevated in only a small subset of the patients, and these same patients also had highly elevated levels of the sheddase ADAM17. These data indicate that ephrin-A1-mediated inflammatory signaling may contribute to COVID-19 disease progression more so than TNFα-mediated inflammatory signaling. They also support the notion that, in COVID-19 inflammation, ADAM12 sheds ephrin-A1, while ADAM17 sheds TNFα. Furthermore, the results suggest that elevated serum levels and activity of cytokines, such as TNFα, and other secreted inflammatory molecules, such as ephrin-A1, are not simply due to overexpression, but also to upregulation of sheddases that release them into the blood circulation. Our results identify ephrin-A1, ADAM12, and other molecules in the ephrin-A1 signaling pathway as potential pharmacological targets for treating COVID-19 inflammation.

16.
J Biomol Tech ; 32(3): 221-227, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35136383

RESUMO

The COVID-19 pandemic has had a profound, detrimental effect on economies and societies worldwide. Where the pandemic has been controlled, extremely high rates of diagnostic testing for the SARS-CoV-2 virus have proven critical, enabling isolation of cases and contact tracing. Recently, diagnostic testing has been supplemented with wastewater measures to evaluate the degree to which communities have infections. Whereas much testing has been done through traditional, centralized, clinical, or environmental laboratory methods, point-of-care testing has proven successful in reducing time to result. As the pandemic progresses and becomes more broadly distributed, further decentralization of diagnostic testing will be helpful to mitigate its spread. This will be particularly both challenging and critical in settings with limited resources due to lack of medical infrastructure and expertise as well as requirements to return results quickly. In this article, we validate the tiny isothermal nucleic acid quantification system (TINY) and a novel loop-mediated isothermal amplification (LAMP)-based assay for the point-of-care diagnosis of SARS-CoV-2 infection in humans and also for in-the-field, point-of-collection surveillance of wastewater. The TINY system is portable and designed for use in settings with limited resources. It can be powered by electrical, solar, or thermal energy and is robust against interruptions in services. These applied testing examples demonstrate that this novel detection platform is a simpler procedure than reverse-transcription quantitative polymerase chain reaction, and moreover, this TINY instrument and LAMP assay combination has the potential to effectively provide both point-of-care diagnosis of individuals and point-of-collection environmental surveillance using wastewater.


Assuntos
COVID-19 , Humanos , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral , SARS-CoV-2
17.
Hum Immunol ; 82(4): 255-263, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33640208

RESUMO

Early in the SARS-CoV-2 pandemic, convalescent plasma (CP) therapy was proposed as a treatment for severely ill patients. We conducted a CP treatment protocol under the Mayo Clinic Extended Access Program at University Hospital Brooklyn (UHB). Potential donors were screened with a lateral flow assay (LFA) for IgM and IgG antibodies against the SARS-CoV-2 S1 receptor-binding domain (RBD). Volunteers that were LFA positive were tested with an ELISA to measure IgG titers against the RBD. Subjects with titers of at least 1:1024 were selected to donate. Most donors with positive LFA had acceptable titers and were eligible to donate. Out of 171 volunteers, only 65 tested positive in the LFA (38.0%), and 55 (32.2%) had titers of at least 1:1024. Before our donation program started, 31 CP units were procured from the New York Blood Center (NYBC). Among the 31 CP units that were obtained from the NYBC, 25 units (80.6%) were positive in the LFA but only 12 units (38.7%) had titers of at least 1:1024. CP was administered to 28 hospitalized COVID-19 patients. Patients who received low titer CP, high titer CP and patients who did not receive CP were followed for 45 days after presentation. Severe adverse events were not associated with CP transfusion. Death was a less frequent outcome for patients that received high titer CP (>1:1024) 38.6% mortality, than patients that received low titer CP (≤1:1024) 77.8% mortality.


Assuntos
Anticorpos Antivirais/uso terapêutico , COVID-19/terapia , SARS-CoV-2/imunologia , Adulto , Idoso , Anticorpos Antivirais/imunologia , Doadores de Sangue , Seleção do Doador , Feminino , Humanos , Imunização Passiva/métodos , Imunoglobulina G/sangue , Imunoglobulina G/uso terapêutico , Imunoglobulina M/sangue , Imunoglobulina M/uso terapêutico , Masculino , Pessoa de Meia-Idade , Plasma/imunologia , Estudos Retrospectivos , Soroterapia para COVID-19
18.
EClinicalMedicine ; 38: 101028, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34308321

RESUMO

BACKGROUND: The negative impact of continued school closures during the height of the COVID-19 pandemic warrants the establishment of cost-effective strategies for surveillance and screening to safely reopen and monitor for potential in-school transmission. Here, we present a novel approach to increase the availability of repetitive and routine COVID-19 testing that may ultimately reduce the overall viral burden in the community. METHODS: We implemented a testing program using the SalivaClear࣪ pooled surveillance method that included students, faculty and staff from K-12 schools (student age range 5-18 years) and universities (student age range >18 years) across the country (Mirimus Clinical Labs, Brooklyn, NY). The data analysis was performed using descriptive statistics, kappa agreement, and outlier detection analysis. FINDINGS: From August 27, 2020 until January 13, 2021, 253,406 saliva specimens were self-collected from students, faculty and staff from 93 K-12 schools and 18 universities. Pool sizes of up to 24 samples were tested over a 20-week period. Pooled testing did not significantly alter the sensitivity of the molecular assay in terms of both qualitative (100% detection rate on both pooled and individual samples) and quantitative (comparable cycle threshold (Ct) values between pooled and individual samples) measures. The detection of SARS-CoV-2 in saliva was comparable to the nasopharyngeal swab. Pooling samples substantially reduced the costs associated with PCR testing and allowed schools to rapidly assess transmission and adjust prevention protocols as necessary. In one instance, in-school transmission of the virus was determined within the main office and led to review and revision of heating, ventilating and air-conditioning systems. INTERPRETATION: By establishing low-cost, weekly testing of students and faculty, pooled saliva analysis for the presence of SARS-CoV-2 enabled schools to determine whether transmission had occurred, make data-driven decisions, and adjust safety protocols. We provide strong evidence that pooled testing may be a fundamental component to the reopening of schools by minimizing the risk of in-school transmission among students and faculty. FUNDING: Skoll Foundation generously provided funding to Mobilizing Foundation and Mirimus for these studies.

19.
Nat Biotechnol ; 35(4): 350-353, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28263295

RESUMO

We present SplashRNA, a sequential classifier to predict potent microRNA-based short hairpin RNAs (shRNAs). Trained on published and novel data sets, SplashRNA outperforms previous algorithms and reliably predicts the most efficient shRNAs for a given gene. Combined with an optimized miR-E backbone, >90% of high-scoring SplashRNA predictions trigger >85% protein knockdown when expressed from a single genomic integration. SplashRNA can significantly improve the accuracy of loss-of-function genetics studies and facilitates the generation of compact shRNA libraries.


Assuntos
Algoritmos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Inativação Gênica , Aprendizado de Máquina , RNA Interferente Pequeno/genética , Software , Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico/métodos , Análise de Sequência de RNA/métodos
20.
J Exp Med ; 212(11): 1833-50, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26438359

RESUMO

The cohesin complex (consisting of Rad21, Smc1a, Smc3, and Stag2 proteins) is critically important for proper sister chromatid separation during mitosis. Mutations in the cohesin complex were recently identified in a variety of human malignancies including acute myeloid leukemia (AML). To address the potential tumor-suppressive function of cohesin in vivo, we generated a series of shRNA mouse models in which endogenous cohesin can be silenced inducibly. Notably, silencing of cohesin complex members did not have a deleterious effect on cell viability. Furthermore, knockdown of cohesin led to gain of replating capacity of mouse hematopoietic progenitor cells. However, cohesin silencing in vivo rapidly altered stem cells homeostasis and myelopoiesis. Likewise, we found widespread changes in chromatin accessibility and expression of genes involved in myelomonocytic maturation and differentiation. Finally, aged cohesin knockdown mice developed a clinical picture closely resembling myeloproliferative disorders/neoplasms (MPNs), including varying degrees of extramedullary hematopoiesis (myeloid metaplasia) and splenomegaly. Our results represent the first successful demonstration of a tumor suppressor function for the cohesin complex, while also confirming that cohesin mutations occur as an early event in leukemogenesis, facilitating the potential development of a myeloid malignancy.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Homeostase , Transtornos Mieloproliferativos/etiologia , Proteínas Supressoras de Tumor/fisiologia , Adulto , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/genética , Humanos , Camundongos , Coesinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA