Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Tree Physiol ; 36(3): 380-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26802540

RESUMO

We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs.


Assuntos
Frutas/fisiologia , Olea/fisiologia , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Biomassa , Folhas de Planta/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia , Estações do Ano , Fatores de Tempo , Água
2.
Biosystems ; 109(3): 280-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22609746

RESUMO

The review presents a topological interpretation of some morphogenetic events through the use of well-known mathematical concepts and theorems. Spatial organization of the biological fields is analyzable in topological terms. Topological singularities inevitably emerging in biological morphogenesis are retained and transformed during pattern formation. It is the topological language that can provide strict and adequate description of various phenomena in developmental and evolutionary transformations. The relationship between local and global orders in metazoan development, i.e., between local morphogenetic processes and integral developmental patterns, is established. A topological inevitability of some developmental events through the use of classical topological concepts is discussed. This methodology reveals a topological imperative as a certain set of topological rules that constrains and directs embryogenesis. A breaking of spatial symmetry of preexisting pattern plays a critical role in biological morphogenesis in development and evolution.


Assuntos
Evolução Biológica , Polaridade Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Modelos Biológicos , Morfogênese/fisiologia , Animais , Fertilização/fisiologia
3.
Theory Biosci ; 129(4): 259-70, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20676941

RESUMO

This paper presents a topological interpretation of some developmental events through the use of well-known concepts and theorems of combinatorial geometry. The organization of early embryo using a simulation of cleavage considering only blastomere contacts is examined. Each blastomere is modeled as a topological cell and whole embryo--as cell packing. The egg cleavage results in a pattern of cellular contacts on the surface of each blastomere and whole embryo, a discrete morphogenetic field. We find topological distinctions between different types of early egg cleavage and suggest a topological classification of cleavage. Blastulation and gastrulation may be related to an inevitable emergence of discrete curvature that directs development in three-dimensional space. The relationship between local and global orders in metazoan development, i.e., between local morphogenetic processes and integral developmental patterns, is established. Thus, this methodology reveals a topological imperative: a certain set of topological rules that constrains and directs biological morphogenesis.


Assuntos
Morfogênese , Algoritmos , Animais , Blastômeros/fisiologia , Fase de Clivagem do Zigoto , Biologia do Desenvolvimento , Gástrula/fisiologia , Modelos Biológicos , Modelos Estatísticos , Modelos Teóricos , Distribuição Normal , Biologia de Sistemas
4.
Bull Math Biol ; 68(8): 2053-67, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16850353

RESUMO

Topological patterns in the development and evolution of metazoa, from sponges to chordates, are considered by means of previously elaborated methodology, with the genus of the surface used as a topological invariant. By this means metazoan morphogenesis may be represented as topological modification(s) of the epithelial surfaces of an animal body. The animal body surface is an interface between an organism and its environment, and topological transformations of the body surface during metazoan development and evolution results in better distribution of flows to and from the external medium, regarded as the source of nutrients and oxygen and the sink of excreta, so ensuring greater metabolic intensity. In sponges and some Cnidaria, the increase of this genus up to high values and the shaping of topologically complicated fractal-like systems are evident. In most Bilateria, a stable topological pattern with a through digestive tube is formed, and the subsequent topological complications of other systems can also appear. The present paper provides a topological interpretation of some developmental events through the use of well-known mathematical concepts and theorems; the relationship between local and global orders in metazoan development, i.e., between local morphogenetic processes and integral developmental patterns, is established. Thus, this methodology reveals a "topological imperative": A certain set of topological rules that constrains and directs biological morphogenesis.


Assuntos
Evolução Biológica , Invertebrados/crescimento & desenvolvimento , Morfogênese/fisiologia , Animais , Cordados/crescimento & desenvolvimento , Poríferos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA