Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ann Neurol ; 85(2): 194-203, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556596

RESUMO

OBJECTIVE: White matter hyperintensities (WMHs) are linked to vascular risk factors and increase the risk of cognitive decline, dementia, and stroke. We here aimed to determine whether obesity contributes to regional WMHs using a whole-brain approach in a well-characterized population-based cohort. METHODS: Waist-to-hip ratio (WHR), body mass index (BMI), systolic/diastolic blood pressure, hypertension, diabetes and smoking status, blood glucose and inflammatory markers, as well as distribution of WMH were assessed in 1,825 participants of the LIFE-adult study (age, 20-82 years; BMI, 18.4-55.4 kg/m2 ) using high-resolution 3-Tesla magnetic resonance imaging. Voxel-wise analyses tested if obesity predicts regional probability of WMH. Additionally, mediation effects of high-sensitive C-reactive protein and interleukin-6 (IL6) measured in blood were related to obesity and WMH using linear regression and structural equation models. RESULTS: WHR related to higher WMH probability predominantly in the deep white matter, even after adjusting for effects of age, sex, and systolic blood pressure (mean ß = 0.0043 [0.0008 SE], 95% confidence interval, [0.00427, 0.0043]; threshold-free cluster enhancement, family-wise error-corrected p < 0.05). Conversely, higher systolic blood pressure was associated with WMH in periventricular white matter regions. Mediation analyses indicated that both higher WHR and higher BMI contributed to increased deep-to-periventricular WMH ratio through elevated IL6. INTERPRETATION: Our results indicate an increased WMH burden selectively in the deep white matter in obese subjects with high visceral fat accumulation, independent of common obesity comorbidities such as hypertension. Mediation analyses proposed that visceral obesity contributes to deep white matter lesions through increases in proinflammatory cytokines, suggesting a pathomechanistic link. Longitudinal studies need to confirm this hypothesis. ANN NEUROL 2019;85:194-203.


Assuntos
Índice de Massa Corporal , Mediadores da Inflamação/sangue , Obesidade Abdominal/sangue , Obesidade Abdominal/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Inflamação/sangue , Inflamação/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Relação Cintura-Quadril , Adulto Jovem
2.
Neuroimage ; 172: 853-863, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107772

RESUMO

Bariatric surgery has become the gold standard for the treatment of morbid obesity (body mass index (BMI) ≥ 40 kg/m2), but only few studies investigated its plastic influences on the obese brain. In this longitudinal study, we combined structural and functional magnetic resonance brain imaging (MRI) in 27 patients (BMI 47.8 ± 5.5 kg/m2) undergoing gastric-bypass surgery and 14 non-obese matched controls (BMI 24.7 ± 3.4 kg/m2). Over the first year after surgery, patients presented widespread changes in white matter density (WMD) as well as gray matter density (GMD) in the cerebral cortex of all lobes, subcortical structures, the brainstem as well as the cerebellum, but no changes in white matter water diffusivity throughout the brain. Voxel-by-voxel regression analyses revealed that all GMD and WMD changes were well associated with elevated regional homogeneity of spontaneous neural activity (ReHo) in blood-oxygenation level-dependent signals. Spatial-temporal integration of structural and functional MRI suggests that gastric-bypass surgery induces widespread plastic changes in brain structure that concurrently homogenizes the functional profile of the cortex, subcortical regions as well as white matter structures.


Assuntos
Encéfalo , Derivação Gástrica , Plasticidade Neuronal/fisiologia , Obesidade/cirurgia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem
3.
Brain ; 138(Pt 3): 540-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25541190

RESUMO

In humans, touching the skin is known to activate, among others, the contralateral primary somatosensory cortex on the postcentral gyrus together with the bilateral parietal operculum (i.e. the anatomical site of the secondary somatosensory cortex). But which brain regions beyond the postcentral gyrus specifically contribute to the perception of touch remains speculative. In this study we collected structural magnetic resonance imaging scans and neurological examination reports of patients with brain injuries or stroke in the left or right hemisphere, but not in the postcentral gyrus as the entry site of cortical somatosensory processing. Using voxel-based lesion-symptom mapping, we compared patients with impaired touch perception (i.e. hypoaesthesia) to patients without such touch impairments. Patients with hypoaesthesia as compared to control patients differed in one single brain cluster comprising the contralateral parietal operculum together with the anterior and posterior insular cortex, the putamen, as well as subcortical white matter connections reaching ventrally towards prefrontal structures. This finding confirms previous speculations on the 'ventral pathway of somatosensory perception' and causally links these brain structures to the perception of touch.


Assuntos
Lesões Encefálicas/complicações , Vias Neurais/patologia , Transtornos da Percepção/etiologia , Transtornos da Percepção/patologia , Córtex Somatossensorial/patologia , Tato/fisiologia , Adolescente , Adulto , Idoso , Lesões Encefálicas/patologia , Mapeamento Encefálico , Feminino , Lateralidade Funcional/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Estatísticas não Paramétricas , Adulto Jovem
4.
Front Hum Neurosci ; 13: 290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507395

RESUMO

Previous magnetic resonance imaging (MRI) studies revealed structural-functional brain reorganization 12 months after gastric-bypass surgery, encompassing cortical and subcortical regions of all brain lobes as well as the cerebellum. Changes in the mean of cluster-wise gray/white matter density (GMD/WMD) were correlated with the individual loss of body mass index (BMI), rendering the BMI a potential marker of widespread surgery-induced brain plasticity. Here, we investigated voxel-by-voxel associations between surgery-induced changes in adiposity, metabolism and inflammation and markers of functional and structural neural plasticity. We re-visited the data of patients who underwent functional and structural MRI, 6 months (n = 27) and 12 months after surgery (n = 22), and computed voxel-wise regression analyses. Only the surgery-induced weight loss was significantly associated with brain plasticity, and this only for GMD changes. After 6 months, weight loss overlapped with altered GMD in the hypothalamus, the brain's homeostatic control site, the lateral orbitofrontal cortex, assumed to host reward and gustatory processes, as well as abdominal representations in somatosensory cortex. After 12 months, weight loss scaled with GMD changes in right cerebellar lobule VII, involved in language-related/cognitive processes, and, by trend, with the striatum, assumed to underpin (food) reward. These findings suggest time-dependent and weight-loss related gray matter plasticity in brain regions involved in the control of eating, sensory processing and cognitive functioning.

5.
JCI Insight ; 4(19)2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31465301

RESUMO

There is increased interest in whether bariatric surgeries such as Roux-en-Y gastric bypass (RYGB) achieve their profound weight-lowering effects in morbidly obese individuals through the brain. Hypothalamic inflammation is a well-recognized etiologic factor in obesity pathogenesis and so represents a potential target of RYGB, but clinical evidence in support of this is limited. We therefore assessed hypothalamic T2-weighted signal intensities (T2W SI) and fractional anisotropy (FA) values, 2 validated radiologic measures of brain inflammation, in relation to BMI and fat mass, as well as circulating inflammatory (C-reactive protein; CrP) and metabolic markers in a cohort of 27 RYGB patients at baseline and 6 and 12 months after surgery. We found that RYGB progressively increased hypothalamic T2W SI values, while it progressively decreased hypothalamic FA values. Regression analyses further revealed that this could be most strongly linked to plasma CrP levels, which independently predicted hypothalamic FA values when adjusting for age, sex, fat mass, and diabetes diagnosis. These findings suggest that RYGB has a major time-dependent impact on hypothalamic inflammation status, possibly by attenuating peripheral inflammation. They also suggest that hypothalamic FA values may provide a more specific radiologic measure of hypothalamic inflammation than more commonly used T2W SI values.


Assuntos
Derivação Gástrica/métodos , Hipotálamo/metabolismo , Inflamação/metabolismo , Obesidade Mórbida/cirurgia , Tecido Adiposo , Adulto , Biomarcadores , Glicemia , Proteína C-Reativa , Diabetes Mellitus , Feminino , Humanos , Hipotálamo/diagnóstico por imagem , Inflamação/diagnóstico por imagem , Insulina/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade
6.
Sci Data ; 6: 180308, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747911

RESUMO

We present a publicly available dataset of 227 healthy participants comprising a young (N=153, 25.1±3.1 years, range 20-35 years, 45 female) and an elderly group (N=74, 67.6±4.7 years, range 59-77 years, 37 female) acquired cross-sectionally in Leipzig, Germany, between 2013 and 2015 to study mind-body-emotion interactions. During a two-day assessment, participants completed MRI at 3 Tesla (resting-state fMRI, quantitative T1 (MP2RAGE), T2-weighted, FLAIR, SWI/QSM, DWI) and a 62-channel EEG experiment at rest. During task-free resting-state fMRI, cardiovascular measures (blood pressure, heart rate, pulse, respiration) were continuously acquired. Anthropometrics, blood samples, and urine drug tests were obtained. Psychiatric symptoms were identified with Standardized Clinical Interview for DSM IV (SCID-I), Hamilton Depression Scale, and Borderline Symptoms List. Psychological assessment comprised 6 cognitive tests as well as 21 questionnaires related to emotional behavior, personality traits and tendencies, eating behavior, and addictive behavior. We provide information on study design, methods, and details of the data. This dataset is part of the larger MPI Leipzig Mind-Brain-Body database.


Assuntos
Cognição , Emoções , Adulto , Fatores Etários , Idoso , Eletroencefalografia , Feminino , Alemanha , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Psicofisiologia/métodos , Adulto Jovem
7.
PLoS One ; 9(2): e89802, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587045

RESUMO

Perceptual decisions not only depend on the incoming information from sensory systems but constitute a combination of current sensory evidence and internally accumulated information from past encounters. Although recent evidence emphasizes the fundamental role of prior knowledge for perceptual decision making, only few studies have quantified the relevance of such priors on perceptual decisions and examined their interplay with other decision-relevant factors, such as the stimulus properties. In the present study we asked whether hysteresis, describing the stability of a percept despite a change in stimulus property and known to occur at perceptual thresholds, also acts as a form of an implicit prior in tactile spatial decision making, supporting the stability of a decision across successively presented random stimuli (i.e., decision hysteresis). We applied a variant of the classical 2-point discrimination task and found that hysteresis influenced perceptual decision making: Participants were more likely to decide 'same' rather than 'different' on successively presented pin distances. In a direct comparison between the influence of applied pin distances (explicit stimulus property) and hysteresis, we found that on average, stimulus property explained significantly more variance of participants' decisions than hysteresis. However, when focusing on pin distances at threshold, we found a trend for hysteresis to explain more variance. Furthermore, the less variance was explained by the pin distance on a given decision, the more variance was explained by hysteresis, and vice versa. Our findings suggest that hysteresis acts as an implicit prior in tactile spatial decision making that becomes increasingly important when explicit stimulus properties provide decreasing evidence.


Assuntos
Tomada de Decisões/fisiologia , Modelos Psicológicos , Percepção Espacial/fisiologia , Percepção do Tato/fisiologia , Adulto , Discriminação Psicológica/fisiologia , Feminino , Humanos , Masculino , Psicometria , Limiar Sensorial , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA