Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 24(Pt 4): 854-865, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28664893

RESUMO

Therapeutic applications of synchrotron X-rays such as microbeam (MRT) and minibeam (MBRT) radiation therapy promise significant advantages over conventional clinical techniques for some diseases if successfully transferred to clinical practice. Preclinical studies show clear evidence that a number of normal tissues in animal models display a tolerance to much higher doses from MRT compared with conventional radiotherapy. However, a wide spread in the parameters studied makes it difficult to make any conclusions about the associated tumour control or normal tissue complication probabilities. To facilitate more systematic and reproducible preclinical synchrotron radiotherapy studies, a dedicated preclinical station including small-animal irradiation stage was designed and installed at the Imaging and Medical Beamline (IMBL) at the Australian Synchrotron. The stage was characterized in terms of the accuracy and reliability of the vertical scanning speed, as this is the key variable in dose delivery. The measured speed was found to be within 1% of the nominal speed for the range of speeds measured by an interferometer. Furthermore, dose measurements confirm the expected relationship between speed and dose and show that the measured dose is independent of the scan direction. Important dosimetric parameters such as peak dose, valley dose, the collimator output factor and peak-to-valley dose ratio are presented for 5 mm × 5 mm, 10 mm × 10 mm and 20 mm × 20 mm field sizes. Finally, a feasibility study on three glioma-bearing rats was performed. MRT and MBRT doses were prescribed to achieve an average dose of 65 Gy in the target, and magnetic resonance imaging follow-up was performed at various time points after irradiation to follow the tumour volume. Although it is impossible to draw conclusions on the different treatments with such a small number of animals, the feasibility of end-to-end preclinical synchrotron radiotherapy studies using the IMBL preclinical stage is demonstrated.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioma/radioterapia , Doses de Radiação , Síncrotrons , Animais , Austrália , Estudos de Viabilidade , Dosagem Radioterapêutica , Ratos
2.
Anal Biochem ; 523: 50-57, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28223165

RESUMO

Metallic nanoparticles have great potential in cancer radiotherapy as theranostic drugs since, they serve simultaneously as contrast agents for medical imaging and as radio-therapy sensitizers. As with other anticancer drugs, intratumoral diffusion is one of the main limiting factors for therapeutic efficiency. To date, a few reports have investigated the intratumoral distribution of metallic nanoparticles. The aim of this study was to determine the quantitative distribution of gadolinium (Gd) nanoparticles after direct intratumoral injection within U87 human glioblastoma tumors grafted in mice, using micro-PIXE (Particle Induced X-ray Emission) imaging. AGuIX (Activation and Guiding of Irradiation by X-ray) 3 nm particles composed of a polysiloxane network surrounded by gadolinium chelates were used. PIXE results indicate that the direct injection of Gd nanoparticles in tumors results in their heterogeneous diffusion, probably related to variations in tumor density. All tumor regions contain Gd, but with markedly different concentrations, with a more than 250-fold difference. Also Gd can diffuse to the healthy adjacent tissue. This study highlights the usefulness of mapping the distribution of metallic nanoparticles at the intratumoral level, and proposes PIXE as an imaging modality to probe the quantitative distribution of metallic nanoparticles in tumors from experimental animal models with micrometer resolution.


Assuntos
Meios de Contraste/metabolismo , Gadolínio/farmacocinética , Glioblastoma/metabolismo , Xenoenxertos , Processamento de Imagem Assistida por Computador/métodos , Nanopartículas/química , Espectrometria por Raios X/métodos , Animais , Feminino , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Distribuição Tecidual , Células Tumorais Cultivadas
3.
Analyst ; 141(7): 2238-49, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26933694

RESUMO

One strategy to improve the clinical outcome of radiotherapy is to use nanoparticles as radiosensitizers. Along this line, numerous studies have shown the enhanced effectiveness of tumour cell killing when nanoparticles are exposed to irradiation. However, the mechanisms of action are not clear yet. In addition to the damage due to a possible local radiation dose enhancement, the interaction of nanoparticles with essential biological macromolecules could lead to changes in the cells, such as cell arrest at radiosensitive phases. Within this framework, vibrational spectroscopy was used to investigate the biochemical changes in F98 glioma cells induced by X-ray irradiations combined with gadolinium nanoparticles. Fourier transform infrared (FTIR) microspectroscopy experiments were performed at the Emira laboratory of the SESAME synchrotron (Jordan), allowing the characterisation of spectral signatures of nanoparticle-induced effects in glioma cells. Multivariate analysis of the spectra recorded using principal component analysis reveals clear differences in the DNA, protein and lipid regions in the presence of nanoparticles. Prior to irradiation, results show that nanoparticles induce biochemical modifications in the cells, probably due to changes in the cellular function. Biochemical alterations are amplified in the presence of radiation. In particular, variations in the intensity and in the position of the PO2(-) symmetric and asymmetric modes are observed due to radiation damage to the DNA, which is increased in nanoparticle-treated cells. At 24 hours post-irradiation, biochemical changes related to the hallmark characteristics of cell death are detected. This includes a shift towards low wavenumbers in the amide I and II bands, relative amplitude changes in the CH2 and CH3 stretching modes, along with DNA chromatin condensation indications. Results were confirmed by two complementary cell viability assays.


Assuntos
Gadolínio/química , Gadolínio/farmacologia , Glioma/patologia , Nanopartículas Metálicas , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Síncrotrons , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Ratos , Raios X
4.
Front Oncol ; 14: 1340190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711846

RESUMO

FLASH radiotherapy (FLASH-RT) is a novel radiotherapy approach based on the use of ultra-high dose radiation to treat malignant cells. Although tumours can be reduced or eradicated using radiotherapy, toxicities induced by radiation can compromise healthy tissues. The FLASH effect is the observation that treatment delivered at an ultra-high dose rate is able to reduce adverse toxicities present at conventional dose rates. While this novel technique may provide a turning point for clinical practice, the exact mechanisms underlying the causes or influences of the FLASH effect are not fully understood. The study presented here uses data collected from 41 experimental investigations (published before March 2024) of the FLASH effect. Searchable databases were constructed to contain the outcomes of the various experiments in addition to values of beam parameters that may have a bearing on the FLASH effect. An in-depth review of the impact of the key beam parameters on the results of the experiments was carried out. Correlations between parameter values and experimental outcomes were studied. Pulse Dose Rate had positive correlations with almost all end points, suggesting viability of FLASH-RT as a new modality of radiotherapy. The collective results of this systematic review study suggest that beam parameter qualities from both FLASH and conventional radiotherapy can be valuable for tissue sparing and effective tumour treatment.

5.
Med Phys ; 51(6): 3995-4006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642468

RESUMO

BACKGROUND: Minibeam represents a preclinical spatially fractionated radiotherapy modality with great translational potential. The advantage lies in its high therapeutic index (compared to GRID and LATTICE) and ability to treat at greater depth (compared to microbeam). Proton minibeam radiotherapy (pMBRT) is a synergy of proton and minibeam. While the single-gantry proton facility has gained popularity due to its affordability and compact design, it often has limited beam time available for research purposes. Conversely, given the current requirement of pMBRT on specific minibeam hardware collimators, necessitates a reproducible and fast setup to minimize pMBRT treatment time and streamline the switching time between pMBRT and conventional treatment for clinically translation. PURPOSE: The contribution of this work is the development and characterization of the first pMBRT system tailored for single-gantry proton facility. The system allows for efficient and reproducible plug-and-play setup, achievable within minutes. METHODS: The single room pMBRT system is constructed based on IBA ProteusONE proton machine. The end of nozzle is attached with beam modifying accessories though an accessory drawer. A small snout is attached to the accessory drawer and used to hold apertures and range shifters. The minibeam aperture consists of two components: a fitting ring and an aperture body. Three minibeam apertures were manufactured. The first-generation apertures underwent qualitatively analysis with film, and the second generation aperture underwent more comprehensive quantitative measurement. The reproducibility of the setup is accessed, and the film measurements are performed to characterize the pMBRT system in cross validation with Monte Carlo (MC) simulations. RESULTS: We presented initial results of large field pMBRT aperture and the film measurements indicates the effect of source-to-isocenter distance = 930 cm in Y proton scanning direction. Consistent with TOPAS MC simulation, the dose uniformity of pMBRT field <2 cm is demonstrated to be better than 2%, rendering its suitability for pre-clinical studies. Subsequently, we developed the second generation of aperture with five slits and characterized the aperture with film dosimetry studies and compared the results to the benchmark MC. Comprehensive film measurements were also performed to evaluate the effect of divergence, air gap and gantry-angle dependency and repeatability and revealing a consistent performance within 5%. Furthermore, the 2D gamma analysis indicated a passing rate exceeding 99% using 3% dose difference and 0.2 mm distance agreement criteria. We also establish the peak valley dose ratio and the depth dose profile measurements, and the results are within 10% from MC simulation. CONCLUSIONS: We have developed the first pMBRT system tailored for a single-gantry proton facility, which has demonstrated accuracy in benchmark with MC simulations, and allows for efficient plug-and-play setup, emphasizing efficiency.


Assuntos
Desenho de Equipamento , Terapia com Prótons , Terapia com Prótons/instrumentação , Método de Monte Carlo , Prótons , Dosagem Radioterapêutica
6.
Phys Med Biol ; 69(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38648789

RESUMO

Spatially fractionated radiation therapy (SFRT) is a therapeutic approach with the potential to disrupt the classical paradigms of conventional radiation therapy. The high spatial dose modulation in SFRT activates distinct radiobiological mechanisms which lead to a remarkable increase in normal tissue tolerances. Several decades of clinical use and numerous preclinical experiments suggest that SFRT has the potential to increase the therapeutic index, especially in bulky and radioresistant tumors. To unleash the full potential of SFRT a deeper understanding of the underlying biology and its relationship with the complex dosimetry of SFRT is needed. This review provides a critical analysis of the field, discussing not only the main clinical and preclinical findings but also analyzing the main knowledge gaps in a holistic way.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias , Humanos , Neoplasias/radioterapia , Animais
7.
Sci Rep ; 14(1): 11973, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796617

RESUMO

The biology underlying proton minibeam radiation therapy (pMBRT) is not fully understood. Here we aim to elucidate the biological effects of pMBRT using Fourier Transform Infrared Microspectroscopy (FTIRM). In vitro (CTX-TNA2 astrocytes and F98 glioma rat cell lines) and in vivo (healthy and F98-bearing Fischer rats) irradiations were conducted, with conventional proton radiotherapy and pMBRT. FTIRM measurements were performed at ALBA Synchrotron, and multivariate data analysis methods were employed to assess spectral differences between irradiation configurations and doses. For astrocytes, the spectral regions related to proteins and nucleic acids were highly affected by conventional irradiations and the high-dose regions of pMBRT, suggesting important modifications on these biomolecules. For glioma, pMBRT had a great effect on the nucleic acids and carbohydrates. In animals, conventional radiotherapy had a remarkable impact on the proteins and nucleic acids of healthy rats; analysis of tumour regions in glioma-bearing rats suggested major nucleic acid modifications due to pMBRT.


Assuntos
Glioma , Terapia com Prótons , Ratos Endogâmicos F344 , Síncrotrons , Animais , Ratos , Glioma/radioterapia , Glioma/patologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Linhagem Celular Tumoral , Astrócitos/efeitos da radiação , Astrócitos/metabolismo , Ácidos Nucleicos/efeitos da radiação , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38621606

RESUMO

PURPOSE: Proton minibeam radiation therapy (pMBRT) is an innovative radiation therapy approach that highly modulates the spatial dimension of the dose delivery using narrow, parallel, and submillimetric proton beamlets. pMBRT has proven its remarkable healthy tissue preservation in the brain and skin. This study assesses the potential advantages of pMBRT for thoracic irradiations compared with conventional radiation therapy in terms of normal tissue toxicity. The challenge here was the influence of respiratory motion on the typical peak and valley dose patterns of pMBRT and its potential biologic effect. METHODS AND MATERIALS: The whole thorax of naïve C57BL/6 mice received one fraction of high dose (18 Gy) pMBRT or conventional proton therapy (CPT) without any respiratory control. The development of radiation-induced pulmonary fibrosis was longitudinally monitored using cone beam computed tomography. Anatomopathologic analysis was carried out at 9 months postirradiation and focused on the reaction of the lungs' parenchyma and the response of cell types involved in the development of radiation-induced fibrosis and lung regeneration as alveolar type II epithelial cells, club cells, and macrophages. RESULTS: pMBRT has milder effects on survival, skin reactions, and lung fibrosis compared with CPT. The pMBRT-induced lung changes were more regional and less severe, with evidence of potential reactive proliferation of alveolar type II epithelial cells and less extensive depletion of club cells and macrophage invasion than the more damaging effects observed in CPT. CONCLUSIONS: pMBRT appears suitable to treat moving targets, holding a significant ability to preserve healthy lung tissue, even without respiratory control or precise targeting.

9.
Radiother Oncol ; 196: 110238, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38527626

RESUMO

BACKGROUND: FLASH-radiotherapy (FLASH-RT) is an emerging modality that uses ultra-high dose rates of radiation to enable curative doses to the tumor while preserving normal tissue. The biological studies showed the potential of FLASH-RT to revolutionize radiotherapy cancer treatments. However, the complex biological basis of FLASH-RT is not fully known yet. AIM: Within this context, our aim is to get deeper insights into the biomolecular mechanisms underlying FLASH-RT through Fourier Transform Infrared Microspectroscopy (FTIRM). METHODS: C57Bl/6J female mice were whole brain irradiated at 10 Gy with the eRT6-Oriatron system. 10 Gy FLASH-RT was delivered in 1 pulse of 1.8µs and conventional irradiations at 0.1 Gy/s. Brains were sampled and prepared for analysis 24 h post-RT. FTIRM was performed at the MIRAS beamline of ALBA Synchrotron. Infrared raster scanning maps of the whole mice brain sections were collected for each sample condition. Hyperspectral imaging and Principal Component Analysis (PCA) were performed in several regions of the brain. RESULTS: PCA results evidenced a clear separation between conventional and FLASH irradiations in the 1800-950 cm-1 region, with a significant overlap between FLASH and Control groups. An analysis of the loading plots revealed that most of the variance accounting for the separation between groups was associated to modifications in the protein backbone (Amide I). This protein degradation and/or conformational rearrangement was concomitant with nucleic acid fragmentation/condensation. Cluster separation between FLASH and conventional groups was also present in the 3000-2800 cm-1 region, being correlated with changes in the methylene and methyl group concentrations and in the lipid chain length. Specific vibrational features were detected as a function of the brain region. CONCLUSION: This work provided new insights into the biomolecular effects involved in FLASH-RT through FTIRM. Our results showed that beyond nucleic acid investigations, one should take into account other dose-rate responsive molecules such as proteins, as they might be key to understand FLASH effect.


Assuntos
Camundongos Endogâmicos C57BL , Animais , Feminino , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Encéfalo/efeitos da radiação , Análise de Componente Principal , Neoplasias Encefálicas/radioterapia , Dosagem Radioterapêutica
10.
Phys Med Biol ; 69(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38211312

RESUMO

Objective. To improve our knowledge about the biological effects of over exposures involving low-energy x-rays, we developed and characterized a preclinical mouse model allowing to mimic different lesion severity degrees induced by 80 kV x-ray depending on the dose and protocol (single or repeated exposure).Approach. Mice were locally exposed (paw) to 80 kV x-rays in a single (15, 30 or 45 Gy inKair) or repeated exposition (2 × 15 or 3 × 15 Gy inKair) to assess different degrees of lesion severity. Six post-irradiation euthanasia time points (0, 7, 14, 21, 42, and 84 days) were determined to follow up the evolution of lesions based on the lesion score, weighing and cutaneous blood perfusion. The bone dose was estimated at the different time points by electron paramagnetic resonance (EPR) spectroscopy.Main results. The monitoring of the lesion severity allows to classify the exposure protocols according to their severity. EPR spectroscopy measurements allow to determine the bone dose on the day of irradiation which is 7 times higher than the initial dose for single protocols. However, the initial signal measured at the end of the repeated exposure was 27% lower than the signal measured for a single dose. The study of the kinetics of EPR signal showed a decrease of the EPR signal which is dependent on the exposure protocol but not on dose highlighting the impact of bone physiology on the bone dose estimation.Significance: the preclinical model developed allows to assess the impact of the dose and protocol on the lesion severity induced by low-energy x-ray. For the first time, the dynamics of free radicals have been quantified in anin vivomodel, highlighting that the doses actually administered can be underestimated if samples are taken weeks or even months after exposure.


Assuntos
Osso e Ossos , Animais , Camundongos , Raios X , Estudos Retrospectivos , Radiografia , Espectroscopia de Ressonância de Spin Eletrônica/métodos
11.
Neurobiol Dis ; 51: 152-60, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23159741

RESUMO

Radiotherapy has shown some efficacy for epilepsies but the insufficient confinement of the radiation dose to the pathological target reduces its indications. Synchrotron-generated X-rays overcome this limitation and allow the delivery of focalized radiation doses to discrete brain volumes via interlaced arrays of microbeams (IntMRT). Here, we used IntMRT to target brain structures involved in seizure generation in a rat model of absence epilepsy (GAERS). We addressed the issue of whether and how synchrotron radiotherapeutic treatment suppresses epileptic activities in neuronal networks. IntMRT was used to target the somatosensory cortex (S1Cx), a region involved in seizure generation in the GAERS. The antiepileptic mechanisms were investigated by recording multisite local-field potentials and the intracellular activity of irradiated S1Cx pyramidal neurons in vivo. MRI and histopathological images displayed precise and sharp dose deposition and revealed no impairment of surrounding tissues. Local-field potentials from behaving animals demonstrated a quasi-total abolition of epileptiform activities within the target. The irradiated S1Cx was unable to initiate seizures, whereas neighboring non-irradiated cortical and thalamic regions could still produce pathological oscillations. In vivo intracellular recordings showed that irradiated pyramidal neurons were strongly hyperpolarized and displayed a decreased excitability and a reduction of spontaneous synaptic activities. These functional alterations explain the suppression of large-scale synchronization within irradiated cortical networks. Our work provides the first post-irradiation electrophysiological recordings of individual neurons. Altogether, our data are a critical step towards understanding how X-ray radiation impacts neuronal physiology and epileptogenic processes.


Assuntos
Epilepsia Tipo Ausência/radioterapia , Rede Nervosa/efeitos da radiação , Córtex Somatossensorial/efeitos da radiação , Animais , Modelos Animais de Doenças , Eletroencefalografia , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Rede Nervosa/fisiopatologia , Ratos , Córtex Somatossensorial/fisiopatologia , Terapia por Raios X/métodos
12.
Med Phys ; 50(8): 5115-5134, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37211907

RESUMO

BACKGROUND: Minibeam radiation therapy (MBRT) is a novel technique which has been shown to widen the therapeutic window through significant normal tissue sparing. Despite the heterogeneous dose distributions, tumor control is still ensured. Nevertheless the exact radiobiological mechanisms responsible for MBRT efficacy are not fully understood. PURPOSE: Reactive oxygen species (ROS) resulting from water radiolysis were investigated given their implications not only on targeted DNA damage, but also for their role in the immune response and non-targeted cell signalling effects: two potential drivers of MBRT efficacy. METHODS: Monte Carlo simulations were performed using TOPAS-nBio to carry out the irradiation of a water phantom with beams of protons (pMBRT), photons (xMBRT), 4 He ions (HeMBRT), and 12 C ions (CMBRT). Primary yields at the end of the chemical stage were calculated in spheres of 20 µm diameter, located in the peaks and valleys at various depths up to the Bragg peak. The chemical stage was limited to 1 ns to approximate biological scavenging, and the yield of · OH, H2 O2 , and e aq - ${\rm e}^{-}_{\rm aq}$ was recorded. RESULTS: Beyond 10 mm, there were no substantial differences in the primary yields between peaks and valleys of the pMBRT and HeMBRT modalities. For xMBRT, there was a lower primary yield of the radical species · OH and e aq - ${\rm e}^{-}_{\rm aq}$ at all depths in the valleys compared to the peaks, and a higher primary yield of H2 O2 . Compared to the peaks, the valleys of the CMBRT modality were subject to a higher · OH and e aq - ${\rm e}^{-}_{\rm aq}$ yield, and lower H2 O2 yield. This difference between peaks and valleys became more severe in depth. Near the Bragg peak, the increase in the primary yield of the valleys over the peaks was 6% and 4% for · OH and e aq - ${\rm e}^{-}_{\rm aq}$ respectively, while there was a decrease in the yield of H2 O2 by 16%. Given the similar ROS primary yields in the peaks and valleys of pMBRT and HeMBRT, the level of indirect DNA damage is expected to be directly proportional to the peak to valley dose ratio (PVDR). The difference in the primary yields implicates a lower level of indirect DNA damage in the valleys compared to the peaks than what would be suggested by the PVDR for xMBRT, and a higher level for CMBRT. CONCLUSIONS: These results highlight the notion that depending on the particle chosen, one can expect different levels of ROS in the peaks and valley that goes beyond what would be expected by the macroscopic PVDR. The combination of MBRT with heavier ions is shown to be particularly interesting as the primary yield in the valleys progressively diverges from the level observed in the peaks as the LET increases. While differences in the reported · OH yields of this work implicated the indirect DNA damage, H2 O2 yields particularly implicate non-targeted cell signalling effects, and therefore this work provides a point of reference for future simulations in which the distribution of this species at more biologically relevant timescales could be investigated.


Assuntos
Dano ao DNA , Fótons , Espécies Reativas de Oxigênio , Radicais Livres , Método de Monte Carlo
13.
Int Rev Cell Mol Biol ; 376: 37-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36997269

RESUMO

The last several years have revealed increasing evidence of the immunomodulatory role of radiation therapy. Radiotherapy reshapes the tumoral microenvironment can shift the balance toward a more immunostimulatory or immunosuppressive microenvironment. The immune response to radiation therapy appears to depend on the irradiation configuration (dose, particle, fractionation) and delivery modes (dose rate, spatial distributions). Although an optimal irradiation configuration (dose, temporal fractionation, spatial dose distribution, etc.) has not yet been determined, temporal schemes employing high doses per fraction appear to favor radiation-induced immune response through immunogenic cell death. Through the release of damage-associated molecular patterns and the sensing of double-stranded DNA and RNA breaks, immunogenic cell death activates the innate and adaptive immune response, leading to tumor infiltration by effector T cells and the abscopal effect. Novel radiotherapy approaches such as FLASH and spatially fractionated radiotherapies (SFRT) strongly modulate the dose delivery method. FLASH-RT and SFRT have the potential to trigger the immune system effectively while preserving healthy surrounding tissues. This manuscript reviews the current state of knowledge on the immunomodulation effects of these two new radiotherapy techniques in the tumor, healthy immune cells and non-targeted regions, as well as their therapeutic potential in combination with immunotherapy.


Assuntos
Neoplasias , Humanos , Neoplasias/radioterapia , Imunoterapia/métodos , Imunomodulação , Fracionamento da Dose de Radiação , Imunidade Adaptativa , Microambiente Tumoral
14.
Cancers (Basel) ; 15(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36765637

RESUMO

(1) Background: Radiotherapeutic treatments of ocular tumors are often challenging because of nearby radiosensitive structures and the high doses required to treat radioresistant cancers such as uveal melanomas. Although increased local control rates can be obtained with advanced techniques such as proton therapy and stereotactic radiosurgery, these modalities are not always accessible to patients (due to high costs or low availability) and side effects in structures such as the lens, eyelids or anterior chamber remain an issue. Minibeam radiation therapy (MBRT) could represent a promising alternative in this regard. MBRT is an innovative new treatment approach where the irradiation field is composed of multiple sub-millimetric beamlets, spaced apart by a few millimetres. This creates a so-called spatial fractionation of the dose which, in small animal experiments, has been shown to increase normal tissue sparing while simultaneously providing high tumour control rates. Moreover, MBRT with orthovoltage X-rays could be easily implemented in widely available and comparably inexpensive irradiation platforms. (2) Methods: Monte Carlo simulations were performed using the TOPAS toolkit to evaluate orthovoltage X-ray MBRT as a potential alternative for treating ocular tumours. Dose distributions were simulated in CT images of a human head, considering six different irradiation configurations. (3) Results: The mean, peak and valley doses were assessed in a generic target region and in different organs at risk. The obtained doses were comparable to those reported in previous X-ray MBRT animal studies where good normal tissue sparing and tumour control (rat glioma models) were found. (4) Conclusions: A proof-of-concept study for the application of orthovoltage X-ray MBRT to ocular tumours was performed. The simulation results encourage the realisation of dedicated animal studies considering minibeam irradiations of the eye to specifically assess ocular and orbital toxicities as well as tumour response. If proven successful, orthovoltage X-ray minibeams could become a cost-effective treatment alternative, in particular for developing countries.

15.
Med Phys ; 50(4): 2463-2473, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36604832

RESUMO

BACKGROUND: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy approach that has shown a significant increase in the therapeutic window in glioma-bearing rats compared to conventional proton therapy. Such preclinical results encourage the preparation of clinical trials. PURPOSE: In this study, the potential of pMBRT for treating clinical indications candidates for the first clinical trials (i.e., brain, lung, and liver metastases) was evaluated. METHODS: Four clinical cases, initially treated with stereotactic radiotherapy (SRT), were selected for this study. pMBRT, SRT, and conventional proton therapy (PT) dose distributions were compared by using three main criteria: (i) the tumor coverage, (ii) the mean dose to organs-at-risk, and (iii) the possible adverse effects in normal tissues by considering valley doses as the responsible for tissue sparing. pMBRT plans consisted of one fraction and one-two fields. Dose calculations were computed by means of Monte Carlo simulations. RESULTS: pMBRT treatments provide a similar or superior target coverage than SRT, even using fewer fields. pMBRT also significantly reduces the biologically effective dose (BED) to organs-at-risk. In addition, valley and mean doses to normal tissues remain below tolerance limits when treatments are delivered in a single fraction, contrary to PT treatments. CONCLUSIONS: This work provides a first insight into the possibility of treating metastases with pMBRT. More favorable dose distributions and treatment delivery regimes may be expected from this new approach than SRT. The advantages of pMBRT would need to be confirmed by means of Phase I clinical trials.


Assuntos
Glioma , Terapia com Prótons , Ratos , Animais , Terapia com Prótons/métodos , Prótons , Encéfalo , Órgãos em Risco , Método de Monte Carlo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
16.
Int J Radiat Oncol Biol Phys ; 115(2): 426-439, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985455

RESUMO

PURPOSE: Minibeam radiation therapy (MBRT) is an innovative technique that uses a spatial dose modulation. The dose distribution consists of high doses (peaks) in the path of the minibeam and low doses (valleys). The underlying biological mechanism associated with MBRT efficacy remains currently unclear and thus we investigated the potential role of the immune system after treatment with MBRT. METHODS AND MATERIALS: Rats bearing an orthotopic glioblastoma cell line were treated with 1 fraction of high dose conventional radiation therapy (30 Gy) or 1 fraction of the same mean dose in MBRT. Both immunocompetent (F344) and immunodeficient (Nude) rats were analyzed in survival studies. Systemic and intratumoral immune cell population changes were studied with flow cytometry and immunohistochemistry (IHC) 2 and 7 days after the irradiation. RESULTS: The absence of response of Nude rats after MBRT suggested that T cells were key in the mode of action of MBRT. An inflammatory phenotype was observed in the blood 1 week after irradiation compared with conventional irradiation. Tumor immune cell analysis by flow cytometry showed a substantial infiltration of lymphocytes, specifically of CD8 T cells and B cells in both conventional and MBRT-treated animals. IHC revealed that MBRT induced a faster recruitment of CD8 and CD4 T cells. Animals that were cured by radiation therapy did not suffer tumor growth after reimplantation of tumoral cells, proving the long-term immunity response generated after a high dose of radiation. CONCLUSIONS: Our findings show that MBRT can elicit a robust antitumor immune response in glioblastoma while avoiding the high toxicity of a high dose of conventional radiation therapy.


Assuntos
Glioblastoma , Ratos , Animais , Dosagem Radioterapêutica , Glioblastoma/radioterapia , Ratos Endogâmicos F344 , Citometria de Fluxo , Sistema Imunitário
17.
Int J Radiat Oncol Biol Phys ; 116(3): 655-665, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563907

RESUMO

PURPOSE: FLASH radiation therapy (FLASH-RT) is a promising radiation technique that uses ultrahigh doses of radiation to increase the therapeutic window of the treatment. FLASH-RT has been observed to provide normal tissue sparing at high dose rates and similar tumor control compared with conventional RT, yet the biological processes governing these radiobiological effects are still unknown. In this study, we sought to investigate the potential immune response generated by FLASH-RT in a high dose of proton therapy in an orthotopic glioma rat model. METHODS AND MATERIALS: We cranially irradiated rats with a single high dose (25 Gy) using FLASH dose rate proton irradiation (257 ± 2 Gy/s) or conventional dose rate proton irradiation (4 ± 0.02 Gy/s). We first assessed the protective FLASH effect that resulted in our setup through behavioral studies in naïve rats. This was followed by a comprehensive analysis of immune cells in blood, healthy tissue of the brain, and tumor microenvironment by flow cytometry. RESULTS: Proton FLASH-RT spared memory impairment produced by conventional high-dose proton therapy and induced a similar tumor infiltrating lymphocyte recruitment. Additionally, a general neuroinflammation that was similar in both dose rates was observed. CONCLUSIONS: Overall, this study demonstrated that FLASH proton therapy offers a neuro-protective effect even at high doses while mounting an effective lymphoid immune response in the tumor.


Assuntos
Glioma , Terapia com Prótons , Ratos , Animais , Terapia com Prótons/métodos , Prótons , Glioma/radioterapia , Radiação Ionizante , Encéfalo , Dosagem Radioterapêutica , Microambiente Tumoral
18.
Commun Med (Lond) ; 3(1): 183, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102219

RESUMO

BACKGROUND: Radiation-induced neurocognitive dysfunction is a major adverse effect of brain radiation therapy and has specific relevance in pediatric oncology, where serious cognitive deficits have been reported in survivors of pediatric brain tumors. Moreover, many pediatric patients receive proton therapy under general anesthesia or sedation to guarantee precise ballistics with a high oxygen content for safety. The present study addresses the relevant question of the potential effect of supplemental oxygen administered during anesthesia on normal tissue toxicity and investigates the anti-tumor immune response generated following conventional and FLASH proton therapy. METHODS: Rats (Fischer 344) were cranially irradiated with a single high dose of proton therapy (15 Gy or 25 Gy) using FLASH dose rate proton irradiation (257 ± 2 Gy/s) or conventional dose rate proton irradiation (4 ± 0.02 Gy/s), and the toxicities in the normal tissue were examined by histological, cytometric and behavioral analysis. Glioblastoma-bearing rats were irradiated in the same manner and tumor-infiltrating leukocytes were quantified by flow cytometry. RESULTS: Our findings indicate that supplemental oxygen has an adverse impact on both functional and anatomical evaluations of normal brain following conventional and FLASH proton therapy. In addition, oxygen supplementation in anesthesia is particularly detrimental for anti-tumor immune response by preventing a strong immune cell infiltration into tumoral tissues following conventional proton therapy. CONCLUSIONS: These results demonstrate the need to further optimize anesthesia protocols used in radiotherapy with the goal of preserving normal tissues and achieving tumor control, specifically in combination with immunotherapy agents.


Proton therapy is a type of precise radiotherapy that can have reduced side effects. Children undergoing proton therapy are often given a general anesthetic, supplemented with high oxygen levels as a measure of safety. However, the consequences of modifying the oxygen concentration in the treatment have not been studied. In this study, we evaluated the consequences of adding oxygen in the anesthesia in a model of brain tumor after conventional proton therapy and a new radiotherapy technique, FLASH proton therapy. We observed that oxygen supplementation can cause more brain damage in FLASH proton therapy and block anti-tumor immune cell infiltration into the tumor in conventional proton therapy. Overall, this study should be taken into consideration when designing new protocols of radiotherapy, specifically those including FLASH proton therapy and combinations with immune-targeted treatments.

19.
J Synchrotron Radiat ; 19(Pt 1): 60-5, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22186645

RESUMO

This feasibility work assesses the therapeutic effectiveness of minibeam radiation therapy, a new synchrotron radiotherapy technique. In this new approach the irradiation is performed on 9L gliosarcoma-bearing rats with arrays of parallel beams of width 500-700 µm. Two irradiation configurations were compared: a lateral unidirectional irradiation and two orthogonal arrays interlacing at the target. A dose escalation study was performed. A factor of three gain in the mean survival time obtained for some animals paves the way for further exploration of the different possibilities of this technique and its further optimization.


Assuntos
Neoplasias Encefálicas/radioterapia , Gliossarcoma/radioterapia , Animais , Linhagem Celular Tumoral , Imageamento por Ressonância Magnética , Masculino , Radiometria/métodos , Ratos , Ratos Endogâmicos F344 , Taxa de Sobrevida , Síncrotrons
20.
Med Phys ; 49(10): 6716-6727, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35904962

RESUMO

BACKGROUND: In reference dosimetry, radiation quality correction factors are used in order to account for changes in the detector's response among different radiation qualities, improving dosimetric accuracy. PURPOSE: Reference dosimetry radiation quality corrections factors for the PTW microDiamond were calculated for preclinical X-ray and proton minibeams, and their impact in dosimetric accuracy was evaluated. METHODS: A formalism for the calculation of radiation quality correction factors for absolute dosimetry in minibeam fields was developed. Following our formalism, radiation quality correction factors were calculated for the PTW microDiamond detector, using the Monte Carlo method. Models of the detector, and X-ray and proton irradiation platform, were imported into the TOPAS Monte Carlo simulation toolkit. The radiation quality correction factors were calculated in the following scenarios: (i) reference dosimetry open field to minibeam center of the central peak, (ii) different positions at the minibeam profile (along the peaks and valleys direction) to the center of the central minibeam, and (iii) some representative depth positions. In addition, the radiation quality correction factors needed for the calculation of the peak-to-valley dose ratio at different depths were calculated. RESULTS: An important overestimation of the dose (about 10%) was found in the case of the open to minibeam field for both X-rays and proton beams, when the correction factors were used. Smaller differences were observed in the other cases. CONCLUSIONS: The usage of the PTW microDiamond detector requires radiation quality correction factors in order to be used in minibeam reference dosimetry.


Assuntos
Terapia com Prótons , Prótons , Método de Monte Carlo , Terapia com Prótons/métodos , Radiometria/métodos , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA