Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Plant J ; 118(4): 940-952, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321620

RESUMO

The introduction of the carboxysome-based CO2 concentrating mechanism (CCM) into crop plants has been modelled to significantly increase crop yields. This projection serves as motivation for pursuing this strategy to contribute to global food security. The successful implementation of this engineering challenge is reliant upon the transfer of a microcompartment that encapsulates cyanobacterial Rubisco, known as the carboxysome, alongside active bicarbonate transporters. To date, significant progress has been achieved with respect to understanding various aspects of the cyanobacterial CCM, and more recently, different components of the carboxysome have been successfully introduced into plant chloroplasts. In this Perspective piece, we summarise recent findings and offer new research avenues that will accelerate research in this field to ultimately and successfully introduce the carboxysome into crop plants for increased crop yields.


Assuntos
Dióxido de Carbono , Cloroplastos , Produtos Agrícolas , Ribulose-Bifosfato Carboxilase , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Fotossíntese/fisiologia , Cianobactérias/metabolismo , Cianobactérias/fisiologia , Cianobactérias/genética , Plantas Geneticamente Modificadas
2.
J Exp Bot ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776254

RESUMO

The ATP-driven bicarbonate transporter 1 (BCT1), a four-component complex in the cyanobacterial CO2-concentrating mechanism, could enhance photosynthetic CO2 assimilation in plant chloroplasts. However, directing its subunits (CmpA, CmpB, CmpC and CmpD) to three chloroplast sub-compartments is highly complex. Investigating BCT1 integration into Nicotiana benthamiana chloroplasts revealed promising targeting strategies using transit peptides from the intermembrane space protein Tic22 for correct CmpA targeting, while the transit peptide of the chloroplastic ABCD2 transporter effectively targeted CmpB to the inner envelope membrane. CmpC and CmpD were targeted to the stroma by RecA and recruited to the inner envelope membrane by CmpB. Despite successful targeting, expression of this complex in CO2-dependent Escherichia coli failed to demonstrate bicarbonate uptake. We then used rational design and directed evolution to generate new BCT1 forms that were constitutively active. Several mutants were recovered, including a CmpCD fusion. Selected mutants were further characterized and stably expressed in Arabidopsis thaliana, but the transformed plants did not have higher carbon assimilation rates or decreased CO2 compensation points in mature leaves. While further analysis is required, this directed evolution and heterologous testing approach presents potential for iterative modification and assessment of CO2-concentrating mechanism components to improve plant photosynthesis.

3.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33931502

RESUMO

Membraneless organelles containing the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are a common feature of organisms utilizing CO2 concentrating mechanisms to enhance photosynthetic carbon acquisition. In cyanobacteria and proteobacteria, the Rubisco condensate is encapsulated in a proteinaceous shell, collectively termed a carboxysome, while some algae and hornworts have evolved Rubisco condensates known as pyrenoids. In both cases, CO2 fixation is enhanced compared with the free enzyme. Previous mathematical models have attributed the improved function of carboxysomes to the generation of elevated CO2 within the organelle via a colocalized carbonic anhydrase (CA) and inwardly diffusing HCO3-, which have accumulated in the cytoplasm via dedicated transporters. Here, we present a concept in which we consider the net of two protons produced in every Rubisco carboxylase reaction. We evaluate this in a reaction-diffusion compartment model to investigate functional advantages these protons may provide Rubisco condensates and carboxysomes, prior to the evolution of HCO3- accumulation. Our model highlights that diffusional resistance to reaction species within a condensate allows Rubisco-derived protons to drive the conversion of HCO3- to CO2 via colocalized CA, enhancing both condensate [CO2] and Rubisco rate. Protonation of Rubisco substrate (RuBP) and product (phosphoglycerate) plays an important role in modulating internal pH and CO2 generation. Application of the model to putative evolutionary ancestors, prior to contemporary cellular HCO3- accumulation, revealed photosynthetic enhancements along a logical sequence of advancements, via Rubisco condensation, to fully formed carboxysomes. Our model suggests that evolution of Rubisco condensation could be favored under low CO2 and low light environments.


Assuntos
Ciclo do Carbono/genética , Dióxido de Carbono/metabolismo , Fotossíntese/genética , Ribulose-Bifosfato Carboxilase/química , Synechococcus/genética , Carbono/química , Carbono/metabolismo , Dióxido de Carbono/química , Anidrases Carbônicas , Organelas/metabolismo , Proteobactérias/química , Proteobactérias/metabolismo , Prótons , Ribulose-Bifosfato Carboxilase/metabolismo , Synechococcus/química , Synechococcus/metabolismo
4.
Photosynth Res ; 156(2): 265-277, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892800

RESUMO

Carboxysomes are bacterial microcompartments, whose structural features enable the encapsulated Rubisco holoenzyme to operate in a high-CO2 environment. Consequently, Rubiscos housed within these compartments possess higher catalytic turnover rates relative to their plant counterparts. This particular enzymatic property has made the carboxysome, along with associated transporters, an attractive prospect to incorporate into plant chloroplasts to increase future crop yields. To date, two carboxysome types have been characterized, the α-type that has fewer shell components and the ß-type that houses a faster Rubisco. While research is underway to construct a native carboxysome in planta, work investigating the internal arrangement of carboxysomes has identified conserved Rubisco amino acid residues between the two carboxysome types which could be engineered to produce a new, hybrid carboxysome. In theory, this hybrid carboxysome would benefit from the simpler α-carboxysome shell architecture while simultaneously exploiting the higher Rubisco turnover rates in ß-carboxysomes. Here, we demonstrate in an Escherichia coli expression system, that the Thermosynechococcus elongatus Form IB Rubisco can be imperfectly incorporated into simplified Cyanobium α-carboxysome-like structures. While encapsulation of non-native cargo can be achieved, T. elongatus Form IB Rubisco does not interact with the Cyanobium carbonic anhydrase, a core requirement for proper carboxysome functionality. Together, these results suggest a way forward to hybrid carboxysome formation.


Assuntos
Anidrases Carbônicas , Cianobactérias , Ribulose-Bifosfato Carboxilase/metabolismo , Organelas/metabolismo , Cloroplastos/metabolismo , Cianobactérias/metabolismo , Anidrases Carbônicas/metabolismo , Dióxido de Carbono/metabolismo , Proteínas de Bactérias/metabolismo
5.
Plant Cell Environ ; 46(1): 23-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200623

RESUMO

Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac ) and electron transport-limited (Aj ) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research.


Assuntos
Nitrogênio , Água , Austrália
6.
J Exp Bot ; 74(12): 3651-3666, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36987927

RESUMO

LCIA (low CO2-inducible protein A) is a chloroplast envelope protein associated with the CO2-concentrating mechanism of the green alga Chlamydomonas reinhardtii. LCIA is postulated to be a HCO3- channel, but previous studies were unable to show that LCIA was actively transporting bicarbonate in planta. Therefore, LCIA activity was investigated more directly in two heterologous systems: an Escherichia coli mutant (DCAKO) lacking both native carbonic anhydrases and an Arabidopsis mutant (ßca5) missing the plastid carbonic anhydrase ßCA5. Neither DCAKO nor ßca5 can grow in ambient CO2 conditions, as they lack carbonic anhydrase-catalyzed production of the necessary HCO3- concentration for lipid and nucleic acid biosynthesis. Expression of LCIA restored growth in both systems in ambient CO2 conditions, which strongly suggests that LCIA is facilitating HCO3- uptake in each system. To our knowledge, this is the first direct evidence that LCIA moves HCO3- across membranes in bacteria and plants. Furthermore, the ßca5 plant bioassay used in this study is the first system for testing HCO3- transport activity in planta, an experimental breakthrough that will be valuable for future studies aimed at improving the photosynthetic efficiency of crop plants using components from algal CO2-concentrating mechanisms.


Assuntos
Anidrases Carbônicas , Chlamydomonas reinhardtii , Bicarbonatos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Fotossíntese , Plantas/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo
7.
Biochemistry ; 58(50): 5030-5039, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31746199

RESUMO

Cyanobacteria have evolved a suite of enzymes and inorganic carbon (Ci) transporters that improve photosynthetic performance by increasing the localized concentration of CO2 around the primary CO2-fixating enzyme, Rubisco. This CO2-concentrating mechanism (CCM) is highly regulated, responds to illumination/darkness cycles, and allows cyanobacteria to thrive under limiting Ci conditions. While the transcriptional control of CCM activity is well understood, less is known about how regulatory proteins might allosterically regulate Ci transporters in response to changing conditions. Cyanobacterial sodium-dependent bicarbonate transporters (SbtAs) are inhibited by PII-like regulatory proteins (SbtBs), with the inhibitory effect being modulated by adenylnucleotides. Here, we used isothermal titration calorimetry to show that SbtB from Cyanobium sp. PCC7001 (SbtB7001) binds AMP, ADP, cAMP, and ATP with micromolar-range affinities. X-ray crystal structures of apo and nucleotide-bound SbtB7001 revealed that while AMP, ADP, and cAMP have little effect on the SbtB7001 structure, binding of ATP stabilizes the otherwise flexible T-loop, and that the flexible C-terminal C-loop adopts several distinct conformations. We also show that ATP binding affinity is increased 10-fold in the presence of Ca2+, and we present an X-ray crystal structure of Ca2+ATP:SbtB7001 that shows how this metal ion facilitates additional stabilizing interactions with the apex of the T-loop. We propose that the Ca2+ATP-induced conformational change observed in SbtB7001 is important for allosteric regulation of SbtA activity by SbtB and is consistent with changing adenylnucleotide levels in illumination/darkness cycles.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bicarbonatos/metabolismo , Cianobactérias , Nucleotídeos de Adenina/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/metabolismo , Modelos Moleculares , Conformação Proteica
8.
J Exp Bot ; 68(14): 3915-3924, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637277

RESUMO

To support photosynthetic CO2 fixation by Rubisco, the chloroplast must be fed with inorganic carbon in the form of CO2 or bicarbonate. However, the mechanisms allowing the rapid passage of this gas and this charged molecule through the bounding membranes of the chloroplast envelope are not yet completely elucidated. We describe here a method allowing us to measure the permeability of these two molecules through the chloroplast envelope using a membrane inlet mass spectrometer and 18O-labelled inorganic carbon. We established that the internal stromal carbonic anhydrase activity is not limiting for this technique, and precisely measured the chloroplast surface area and permeability values for CO2 and bicarbonate. This was performed on chloroplasts from several plant species, with values ranging from 2.3 × 10-4 m s-1 to 8 × 10-4 m s-1 permeability for CO2 and 1 × 10-8 m s-1 for bicarbonate. We were able to apply our method to chloroplasts from an Arabidopsis aquaporin mutant, and this showed that CO2 permeability was reduced 50% in the mutant compared with the wild-type reference.


Assuntos
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Permeabilidade da Membrana Celular , Cloroplastos/metabolismo , Espectrometria de Massas/métodos , Fotossíntese
9.
J Exp Bot ; 68(14): 3717-3737, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28444330

RESUMO

Growth and productivity in important crop plants is limited by the inefficiencies of the C3 photosynthetic pathway. Introducing CO2-concentrating mechanisms (CCMs) into C3 plants could overcome these limitations and lead to increased yields. Many unicellular microautotrophs, such as cyanobacteria and green algae, possess highly efficient biophysical CCMs that increase CO2 concentrations around the primary carboxylase enzyme, Rubisco, to enhance CO2 assimilation rates. Algal and cyanobacterial CCMs utilize distinct molecular components, but share several functional commonalities. Here we outline the recent progress and current challenges of engineering biophysical CCMs into C3 plants. We review the predicted requirements for a functional biophysical CCM based on current knowledge of cyanobacterial and algal CCMs, the molecular engineering tools and research pipelines required to translate our theoretical knowledge into practice, and the current challenges to achieving these goals.


Assuntos
Cianobactérias/genética , Embriófitas/genética , Fotossíntese , Plantas Geneticamente Modificadas/genética , Biofísica , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
10.
J Exp Bot ; 68(14): 3879-3890, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633328

RESUMO

The supply of inorganic carbon (Ci) at the site of fixation by Rubisco is a key parameter for efficient CO2 fixation in aquatic organisms including the green alga, Chlamydomonas reinhardtii. Chlamydomonas reinhardtii cells, when grown on limiting CO2, have a CO2-concentrating mechanism (CCM) that functions to concentrate CO2 at the site of Rubisco. Proteins thought to be involved in inorganic carbon uptake have been identified and localized to the plasma membrane or chloroplast envelope. However, current CCM models suggest that additional molecular components are involved in Ci uptake. In this study, the gene Cia8 was identified in an insertional mutagenesis screen and characterized. The protein encoded by Cia8 belongs to the sodium bile acid symporter subfamily. Transcript levels for this gene were significantly up-regulated when the cells were grown on low CO2. The cia8 mutant exhibited reduced growth and reduced affinity for Ci when grown in limiting CO2 conditions. Prediction programs localize this protein to the chloroplast. Ci uptake and the photosynthetic rate, particularly at high external pH, were reduced in the mutant. The results are consistent with the model that CIA8 is involved in Ci uptake in C. reinhardtii.


Assuntos
Proteínas de Algas/genética , Carbono/metabolismo , Chlamydomonas reinhardtii/genética , Proteínas de Cloroplastos/genética , Fotossíntese , Proteínas de Algas/metabolismo , Compostos Inorgânicos de Carbono/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Cloroplastos/metabolismo , Regulação para Cima
11.
Plant Physiol ; 165(1): 398-411, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24642960

RESUMO

The carbon dioxide (CO2)-concentrating mechanism of cyanobacteria is characterized by the occurrence of Rubisco-containing microcompartments called carboxysomes within cells. The encapsulation of Rubisco allows for high-CO2 concentrations at the site of fixation, providing an advantage in low-CO2 environments. Cyanobacteria with Form-IA Rubisco contain α-carboxysomes, and cyanobacteria with Form-IB Rubisco contain ß-carboxysomes. The two carboxysome types have arisen through convergent evolution, and α-cyanobacteria and ß-cyanobacteria occupy different ecological niches. Here, we present, to our knowledge, the first direct comparison of the carboxysome function from α-cyanobacteria (Cyanobium spp. PCC7001) and ß-cyanobacteria (Synechococcus spp. PCC7942) with similar inorganic carbon (Ci; as CO2 and HCO3-) transporter systems. Despite evolutionary and structural differences between α-carboxysomes and ß-carboxysomes, we found that the two strains are remarkably similar in many physiological parameters, particularly the response of photosynthesis to light and external Ci and their modulation of internal ribulose-1,5-bisphosphate, phosphoglycerate, and Ci pools when grown under comparable conditions. In addition, the different Rubisco forms present in each carboxysome had almost identical kinetic parameters. The conclusions indicate that the possession of different carboxysome types does not significantly influence the physiological function of these species and that similar carboxysome function may be possessed by each carboxysome type. Interestingly, both carboxysome types showed a response to cytosolic Ci, which is of higher affinity than predicted by current models, being saturated by 5 to 15 mm Ci. This finding has bearing on the viability of transplanting functional carboxysomes into the C3 chloroplast.


Assuntos
Dióxido de Carbono/metabolismo , Cianobactérias/metabolismo , Organelas/metabolismo , Bicarbonatos/metabolismo , Carbono/farmacologia , Cianobactérias/efeitos dos fármacos , Cianobactérias/efeitos da radiação , Cianobactérias/ultraestrutura , Ácidos Glicéricos/metabolismo , Cinética , Luz , Espectrometria de Massas , Organelas/efeitos dos fármacos , Organelas/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulosefosfatos/metabolismo , Synechococcus/efeitos dos fármacos , Synechococcus/metabolismo , Synechococcus/efeitos da radiação , Synechococcus/ultraestrutura
13.
Mol Membr Biol ; 31(6): 177-82, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25222859

RESUMO

This mini-review addresses advances in understanding the transmembrane topologies of two unrelated, single-subunit bicarbonate transporters from cyanobacteria, namely BicA and SbtA. BicA is a Na(+)-dependent bicarbonate transporter that belongs to the SulP/SLC26 family that is widespread in both eukaryotes and prokaryotes. Topology mapping of BicA via the phoA/lacZ fusion reporter method identified 12 transmembrane helices with an unresolved hydrophobic region just beyond helix 8. Re-interpreting this data in the light of a recent topology study on rat prestin leads to a consensus topology of 14 transmembrane domains with a 7+7 inverted repeat structure. SbtA is also a Na(+)-dependent bicarbonate transporter, but of considerably higher affinity (Km 2-5 µM versus >100 µM for BicA). Whilst SbtA is widespread in cyanobacteria and a few bacteria, it appears to be absent from eukaryotes. Topology mapping of SbtA via the phoA/lacZ fusion reporter method identified 10 transmembrane helices. The topology consists of a 5+5 inverted repeat, with the two repeats separated by a large intracellular loop. The unusual location of the N and C-termini outside the cell raises the possibility that SbtA forms a novel fold, not so far identified by structural and topological studies on transport proteins.


Assuntos
Proteínas de Bactérias/química , Bicarbonatos/metabolismo , Cianobactérias/metabolismo , Bombas de Íon/química , Proteínas de Bactérias/genética , Cianobactérias/química , Cianobactérias/genética , Bombas de Íon/genética , Modelos Moleculares , Mapeamento de Peptídeos , Estrutura Secundária de Proteína
14.
Photosynth Res ; 121(2-3): 135-50, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24907906

RESUMO

Carboxysomes are proteinaceous microcompartments that encapsulate carbonic anhydrase (CA) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco); carboxysomes, therefore, catalyze reversible HCO3 (-) dehydration and the subsequent fixation of CO2. The N- and C-terminal domains of the ß-carboxysome scaffold protein CcmM participate in a network of protein-protein interactions that are essential for carboxysome biogenesis, organization, and function. The N-terminal domain of CcmM in the thermophile Thermosynechococcus elongatus BP-1 is also a catalytically active, redox regulated γ-CA. To experimentally determine if CcmM from a mesophilic cyanobacterium is active, we cloned, expressed and purified recombinant, full-length CcmM from Nostoc sp. PCC 7120 as well as the N-terminal 209 amino acid γ-CA-like domain. Both recombinant proteins displayed ethoxyzolamide-sensitive CA activity in mass spectrometric assays, as did the carboxysome-enriched TP fraction. NstCcmM209 was characterized as a moderately active and efficient γ-CA with a k cat of 2.0 × 10(4) s(-1) and k cat/K m of 4.1 × 10(6) M(-1) s(-1) at 25 °C and pH 8, a pH optimum between 8 and 9.5 and a temperature optimum spanning 25-35 °C. NstCcmM209 also catalyzed the hydrolysis of the CO2 analog carbonyl sulfide. Circular dichroism and intrinsic tryptophan fluorescence analysis demonstrated that NstCcmM209 was progressively and irreversibly denatured above 50 °C. NstCcmM209 activity was inhibited by the reducing agent tris(hydroxymethyl)phosphine, an effect that was fully reversed by a molar excess of diamide, a thiol oxidizing agent, consistent with oxidative activation being a universal regulatory mechanism of CcmM orthologs. Immunogold electron microscopy and Western blot analysis of TP pellets indicated that Rubisco and CcmM co-localize and are concentrated in Nostoc sp. PCC 7120 carboxysomes.


Assuntos
Anidrases Carbônicas/química , Anidrases Carbônicas/metabolismo , Nostoc/enzimologia , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
15.
Sci Adv ; 10(19): eadk7283, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728392

RESUMO

Cyanobacterial CO2 concentrating mechanisms (CCMs) sequester a globally consequential proportion of carbon into the biosphere. Proteinaceous microcompartments, called carboxysomes, play a critical role in CCM function, housing two enzymes to enhance CO2 fixation: carbonic anhydrase (CA) and Rubisco. Despite its importance, our current understanding of the carboxysomal CAs found in α-cyanobacteria, CsoSCA, remains limited, particularly regarding the regulation of its activity. Here, we present a structural and biochemical study of CsoSCA from the cyanobacterium Cyanobium sp. PCC7001. Our results show that the Cyanobium CsoSCA is allosterically activated by the Rubisco substrate ribulose-1,5-bisphosphate and forms a hexameric trimer of dimers. Comprehensive phylogenetic and mutational analyses are consistent with this regulation appearing exclusively in cyanobacterial α-carboxysome CAs. These findings clarify the biologically relevant oligomeric state of α-carboxysomal CAs and advance our understanding of the regulation of photosynthesis in this globally dominant lineage.


Assuntos
Anidrases Carbônicas , Cianobactérias , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/química , Cianobactérias/metabolismo , Cianobactérias/genética , Cianobactérias/enzimologia , Regulação Alostérica , Filogenia , Ribulosefosfatos/metabolismo , Modelos Moleculares , Multimerização Proteica , Dióxido de Carbono/metabolismo , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
16.
J Exp Bot ; 64(3): 753-68, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23028015

RESUMO

Crop yields need to nearly double over the next 35 years to keep pace with projected population growth. Improving photosynthesis, via a range of genetic engineering strategies, has been identified as a promising target for crop improvement with regard to increased photosynthetic yield and better water-use efficiency (WUE). One approach is based on integrating components of the highly efficient CO(2)-concentrating mechanism (CCM) present in cyanobacteria (blue-green algae) into the chloroplasts of key C(3) crop plants, particularly wheat and rice. Four progressive phases towards engineering components of the cyanobacterial CCM into C(3) species can be envisaged. The first phase (1a), and simplest, is to consider the transplantation of cyanobacterial bicarbonate transporters to C(3) chloroplasts, by host genomic expression and chloroplast targeting, to raise CO(2) levels in the chloroplast and provide a significant improvement in photosynthetic performance. Mathematical modelling indicates that improvements in photosynthesis as high as 28% could be achieved by introducing both of the single-gene, cyanobacterial bicarbonate transporters, known as BicA and SbtA, into C(3) plant chloroplasts. Part of the first phase (1b) includes the more challenging integration of a functional cyanobacterial carboxysome into the chloroplast by chloroplast genome transformation. The later three phases would be progressively more elaborate, taking longer to engineer other functional components of the cyanobacterial CCM into the chloroplast, and targeting photosynthetic and WUE efficiencies typical of C(4) photosynthesis. These later stages would include the addition of NDH-1-type CO(2) pumps and suppression of carbonic anhydrase and C(3) Rubisco in the chloroplast stroma. We include a score card for assessing the success of physiological modifications gained in phase 1a.


Assuntos
Proteínas de Bactérias/genética , Dióxido de Carbono/metabolismo , Produtos Agrícolas/metabolismo , Cianobactérias/metabolismo , Fotossíntese , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Produtos Agrícolas/microbiologia , Cianobactérias/genética , Engenharia Metabólica
17.
Plant Physiol ; 155(2): 956-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177473

RESUMO

In C(3) plants, CO(2) assimilation is limited by ribulose 1,5-bisphosphate (RuBP) regeneration rate at high CO(2). RuBP regeneration rate in turn is determined by either the chloroplast electron transport capacity to generate NADPH and ATP or the activity of Calvin cycle enzymes involved in regeneration of RuBP. Here, transgenic tobacco (Nicotiana tabacum 'W38') expressing an antisense gene directed at the transcript of either the Rieske iron-sulfur protein of the cytochrome (Cyt) b(6)/f complex or the δ-subunit of chloroplast ATP synthase have been used to investigate the effect of a reduction of these complexes on chloroplast electron transport rate (ETR). Reductions in δ-subunit of ATP synthase content did not alter chlorophyll, Cyt b(6)/f complex, or Rubisco content, but reduced ETR estimated either from measurements of chlorophyll fluorescence or CO(2) assimilation rates at high CO(2). Plants with low ATP synthase content exhibited higher nonphotochemical quenching and achieved higher ETR per ATP synthase than the wild type. The proportional increase in ETR per ATP synthase complex was greatest at 35°C, showing that the ATP synthase activity can vary in vivo. In comparison, there was no difference in the ETR per Cyt b(6)/f complex in plants with reduced Cyt b(6)/f content and the wild type. The ETR decreased more drastically with reductions in Cyt b(6)/f complex than ATP synthase content. This suggests that chloroplast ETR is more limited by Cyt b(6)/f than ATP synthase content and is a potential target for enhancing photosynthetic capacity in crops.


Assuntos
ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Cloroplastos/enzimologia , Complexo Citocromos b6f/metabolismo , Nicotiana/enzimologia , Fotossíntese , Dióxido de Carbono/metabolismo , Clorofila/análise , Transporte de Elétrons , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/fisiologia , Ribulose-Bifosfato Carboxilase/análise , Nicotiana/fisiologia
18.
Mol Membr Biol ; 28(5): 265-75, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21688970

RESUMO

The transporter SbtA is a high affinity Na+-dependent HCO3- uptake system present in a majority of cyanobacterial clades. It functions in conjunction with CO2 uptake systems and other HCO3- uptake systems to allow cyanobacteria to accumulate high levels of HCO3- used to support efficient photosynthetic CO2 fixation via the CO2 concentrating mechanism in these species. The phoA/lacZ fusion reporter method was used to determine the membrane topology of the cyanobacterial bicarbonate transporter, SbtA (predicted size of ∼39.7 kD), cloned from the freshwater strain, Synechocystis PCC6803. The structure conforms to a model featuring 10 transmembrane helices (TMHs), with a distinct 5+5 duplicated structure. Both the N- and C-terminus are outside the cell and the second half of the protein is inverted relative to the first. The first putative helix appears to lack sufficient topogenic signals for its correct orientation in the membrane and instead relies on the presence of later helices. The cytoplasmic loop between helices 5 and 6 is a likely location for regulatory mechanisms that could govern activation of the transporter, and the cytoplasmic loop between helices 9 and 10 also contains some conserved putative regulatory residues.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Synechococcus/metabolismo , Sequência de Aminoácidos , Genes Reporter , Dados de Sequência Molecular , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , beta-Galactosidase/metabolismo
19.
Biochim Biophys Acta Bioenerg ; 1863(1): 148503, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610280

RESUMO

The uptake of inorganic carbon in cyanobacteria is facilitated by an energetically intensive CO2-concentrating mechanism (CCM). This includes specialized Type-1 NDH complexes that function to couple photosynthetic redox energy to CO2 hydration forming the bicarbonate that accumulates to high cytoplasmic concentrations during the operation of the CCM, required for effective carbon fixation. Here we used a Synechococcus PCC7942 expression system to investigate the role of conserved histidine and cysteine residues in the CupB (also designated, ChpX) protein, which has been hypothesized to participate in a vectoral CO2 hydration reaction near the interface between CupB protein and the proton-pumping subunits of the NDH-1 complex. A homology model has been constructed and most of the targeted conserved residues are in the vicinity of a Zn ion modeled to form the catalytic site of deprotonation and CO2 hydration. Growth and CO2 uptake assays show that the most severe defects in activity among the targeted residues are due to a substitution of the predicted Zn ligand, CupB-His86. Mutations at other sites produced intermediate effects. Proteomic analysis revealed that some amino acid substitution mutations of CupB caused the induction of bicarbonate uptake proteins to a greater extent than complete deletion of CupB, despite growth under CO2-enriched conditions. The results are discussed in terms of hypotheses on the catalytic function of this unusual enzyme.


Assuntos
Dióxido de Carbono , Fotossíntese , Mutagênese
20.
ACS Synth Biol ; 11(1): 154-161, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34664944

RESUMO

The carboxysome is a versatile paradigm of prokaryotic organelles and is a proteinaceous self-assembling microcompartment that plays essential roles in carbon fixation in all cyanobacteria and some chemoautotrophs. The carboxysome encapsulates the central CO2-fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), using a polyhedral protein shell that is selectively permeable to specific metabolites in favor of Rubisco carboxylation. There is tremendous interest in repurposing carboxysomes to boost carbon fixation in heterologous organisms. Here, we develop the design and engineering of α-carboxysomes by coexpressing the Rubisco activase components CbbQ and CbbO with α-carboxysomes in Escherichia coli. Our results show that CbbQ and CbbO could assemble into the reconstituted α-carboxysome as intrinsic components. Incorporation of both CbbQ and CbbO within the carboxysome promotes activation of Rubisco and enhances the CO2-fixation activities of recombinant carboxysomes. We also show that the structural composition of these carboxysomes could be modified in different expression systems, representing the plasticity of the carboxysome architecture. In translational terms, our study informs strategies for engineering and modulating carboxysomes in diverse biotechnological applications.


Assuntos
Ribulose-Bifosfato Carboxilase , Ativador de Plasminogênio Tecidual , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Dióxido de Carbono/metabolismo , Organelas/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ativador de Plasminogênio Tecidual/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA