Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Oncol ; 29(1): 215-222, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29045551

RESUMO

Background: Radiotherapy is an effective treatment of intermediate/high-risk locally advanced prostate cancer, however, >30% of patients relapse within 5 years. Clinicopathological parameters currently fail to identify patients prone to systemic relapse and those whom treatment intensification may be beneficial. The purpose of this study was to independently validate the performance of a 70-gene Metastatic Assay in a cohort of diagnostic biopsies from patients treated with radical radiotherapy and androgen deprivation therapy. Patients and methods: A bridging cohort of prostate cancer diagnostic biopsy specimens was profiled to enable optimization of the Metastatic Assay threshold before further independent clinical validation in a cohort of diagnostic biopsies from patients treated with radical radiotherapy and androgen deprivation therapy. Multivariable Cox proportional hazard regression analysis was used to assess assay performance in predicting biochemical failure-free survival (BFFS) and metastasis-free survival (MFS). Results: Gene expression analysis was carried out in 248 patients from the independent validation cohort and the Metastatic Assay applied. Ten-year MFS was 72% for Metastatic Assay positive patients and 94% for Metastatic Assay negative patients [HR = 3.21 (1.35-7.67); P = 0.003]. On multivariable analysis the Metastatic Assay remained predictive for development of distant metastases [HR = 2.71 (1.11-6.63); P = 0.030]. The assay retained independent prognostic performance for MFS when assessed with the Cancer of the Prostate Assessment Score (CAPRA) [HR = 3.23 (1.22-8.59); P = 0.019] whilst CAPRA itself was not significant [HR = 1.88, (0.52-6.77); P = 0.332]. A high concordance [100% (61.5-100)] for the assay result was noted between two separate foci taken from 11 tumours, whilst Gleason score had low concordance. Conclusions: The Metastatic Assay demonstrated significant prognostic performance in patients treated with radical radiotherapy both alone and independent of standard clinical and pathological variables. The Metastatic Assay could have clinical utility when deciding upon treatment intensification in high-risk patients. Genomic and clinical data are available as a public resource.


Assuntos
Biópsia/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Idoso , Estudos de Coortes , Intervalo Livre de Doença , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Modelos de Riscos Proporcionais , Neoplasias da Próstata/genética , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco
2.
Radiat Environ Biophys ; 57(1): 5-15, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29247291

RESUMO

MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website ( http://www.melodi-online.eu/sra.html ).


Assuntos
Comunicação Interdisciplinar , Doses de Radiação , Radiobiologia/métodos , Humanos , Exposição à Radiação , Tolerância a Radiação , Medição de Risco
3.
Nanotechnology ; 27(21): 215101, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27080849

RESUMO

Radiation resistance and toxicity in normal tissues are limiting factors in the efficacy of radiotherapy. Gold nanoparticles (GNPs) have been shown to be effective at enhancing radiation-induced cell death, and were initially proposed to physically enhance the radiation dose deposited. However, biological responses of GNP radiosensitization based on physical assumptions alone are not predictive of radiosensitisation and therefore there is a fundamental research need to determine biological mechanisms of response to GNPs alone and in combination with ionising radiation. This study aimed to identify novel mechanisms of cancer cell radiosensitisation through the use of GNPs, focusing on their ability to induce cellular oxidative stress and disrupt mitochondrial function. Using N-acetyl-cysteine, we found mitochondrial oxidation to be a key event prior to radiation for the radiosensitisation of cancer cells and suggests the overall cellular effects of GNP radiosensitisation are a result of their interaction with protein disulphide isomerase (PDI). This investigation identifies PDI and mitochondrial oxidation as novel targets for radiosensitisation.


Assuntos
Acetilcisteína/farmacologia , Ouro/farmacologia , Nanopartículas Metálicas/química , Neoplasias/enzimologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Radiossensibilizantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Ouro/química , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Estresse Oxidativo/efeitos da radiação
4.
Radiother Oncol ; 191: 110063, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135185

RESUMO

PURPOSE: The ADRRAD trial reported the safety and feasibility of the combination of external beam radiotherapy and radium-223 in the treatment of de novo bone metastatic prostate. This study aimed to determine if any biomarkers predictive of response to these treatments could be identified. EXPERIMENTAL DESIGN: 30 patients with newly diagnosed bone metastatic hormone sensitive prostate cancer were recruited to the ADRRAD trial. Blood samples were taken pre-treatment, before cycles 2 to 6 of radium-223, and 8 weeks and 6 months after treatment. Mononuclear cells were isolated and DNA damage was assessed at all timepoints. RESULTS: DNA damage was increased in all patients during treatment, with bigger increases in foci observed in patients who relapsed late compared to those who relapsed early. Increases in DNA damage during the radium-223 only cycles of treatment were specifically related to response in these patients. Analysis of hematology counts also showed bigger decreases in red blood cell and hemoglobin counts in patients who experienced later biochemical relapse. CONCLUSIONS: While some patients responded to this combination treatment, others relapsed within one year of treatment initiation. This study identifies a biomarker based approach that may be useful in predicting which patients will respond to treatment, by monitoring both increases in DNA damage above baseline levels in circulating lymphocytes and decreases in red blood cell and hemoglobin counts during treatment.


Assuntos
Neoplasias Ósseas , Neoplasias de Próstata Resistentes à Castração , Rádio (Elemento) , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/radioterapia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias Ósseas/radioterapia , Neoplasias Ósseas/secundário , Recidiva Local de Neoplasia/tratamento farmacológico , Biomarcadores , Rádio (Elemento)/uso terapêutico , Rádio (Elemento)/efeitos adversos , Tolerância a Radiação , Hemoglobinas , Hormônios
5.
Clin Transl Radiat Oncol ; 40: 100605, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36910025

RESUMO

•Improvement of therapeutic ratio by novel unconventional radiotherapy approaches.•Immunomodulation using high-dose spatially fractionated radiotherapy.•Boosting radiation anti-tumor effects by adding an immune-mediated cell killing.

6.
Phys Med Biol ; 67(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35263730

RESUMO

Objective. In the irradiation of living tissue, the fundamental physical processes involved in radical production typically occur on a timescale of a few femtoseconds. A detailed understanding of these phenomena has thus far been limited by the relatively long duration of the radiation sources employed, extending well beyond the timescales for radical generation and evolution.Approach. Here, we propose a femtosecond-scale photon source, based on inverse Compton scattering of laser-plasma accelerated electron beams in the field of a second scattering laser pulse.Main results. Detailed numerical modelling indicates that existing laser facilities can provide ultra-short and high-flux MeV-scale photon beams, able to deposit doses tuneable from a fraction of Gy up to a few Gy per pulse, resulting in dose rates exceeding 1013Gy/s.Significance. We envisage that such a source will represent a unique tool for time-resolved radiobiological experiments, with the prospect of further advancing radio-therapeutic techniques.


Assuntos
Elétrons , Aceleradores de Partículas , Lasers , Fótons/uso terapêutico , Radiobiologia
7.
Clin Oncol (R Coll Radiol) ; 33(11): 705-712, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454806

RESUMO

Microbeam radiotherapy (MRT) is the delivery of spatially fractionated beams that have the potential to offer significant improvements in the therapeutic ratio due to the delivery of micron-sized high dose and dose rate beams. They build on longstanding clinical experience of GRID radiotherapy and more recently lattice-based approaches. Here we briefly overview the preclinical evidence for MRT efficacy and highlight the challenges for bringing this to clinical utility. The biological mechanisms underpinning MRT efficacy are still unclear, but involve vascular, bystander, stem cell and potentially immune responses. There is probably significant overlap in the mechanisms underpinning MRT responses and FLASH radiotherapy that needs to be further defined.


Assuntos
Radioterapia (Especialidade) , Radiobiologia , Humanos , Radioterapia
8.
Comput Struct Biotechnol J ; 19: 3470-3481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188784

RESUMO

RNA-sequencing (RNA-seq) is a relatively new technology that lacks standardisation. RNA-seq can be used for Differential Gene Expression (DGE) analysis, however, no consensus exists as to which methodology ensures robust and reproducible results. Indeed, it is broadly acknowledged that DGE methods provide disparate results. Despite obstacles, RNA-seq assays are in advanced development for clinical use but further optimisation will be needed. Herein, five DGE models (DESeq2, voom + limma, edgeR, EBSeq, NOISeq) for gene-level detection were investigated for robustness to sequencing alterations using a controlled analysis of fixed count matrices. Two breast cancer datasets were analysed with full and reduced sample sizes. DGE model robustness was compared between filtering regimes and for different expression levels (high, low) using unbiased metrics. Test sensitivity estimated as relative False Discovery Rate (FDR), concordance between model outputs and comparisons of a 'population' of slopes of relative FDRs across different library sizes, generated using linear regressions, were examined. Patterns of relative DGE model robustness proved dataset-agnostic and reliable for drawing conclusions when sample sizes were sufficiently large. Overall, the non-parametric method NOISeq was the most robust followed by edgeR, voom, EBSeq and DESeq2. Our rigorous appraisal provides information for method selection for molecular diagnostics. Metrics may prove useful towards improving the standardisation of RNA-seq for precision medicine.

9.
Nanotechnology ; 21(29): 295101, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20601762

RESUMO

High atomic number (Z) materials such as gold preferentially absorb kilovoltage x-rays compared to soft tissue and may be used to achieve local dose enhancement in tumours during treatment with ionizing radiation. Gold nanoparticles have been demonstrated as radiation dose enhancing agents in vivo and in vitro. In the present study, we used multiple endpoints to characterize the cellular cytotoxic response of a range of cell lines to 1.9 nm gold particles and measured dose modifying effects following transient exposure at low concentrations. Gold nanoparticles caused significant levels of cell type specific cytotoxicity, apoptosis and increased oxidative stress. When used as dose modifying agents, dose enhancement factors varied between the cell lines investigated with the highest enhancement being 1.9 in AGO-1522B cells at a nanoparticle concentration of 100 microg ml(-1). This study shows exposure to 1.9 nm gold particles to induce a range of cell line specific responses including decreased clonogenic survival, increased apoptosis and induction of DNA damage which may be mediated through the production of reactive oxygen species. This is the first study involving 1.9 nm nanometre sized particles to report multiple cellular responses which impact on the radiation dose modifying effect. The findings highlight the need for extensive characterization of responses to gold nanoparticles when assessing dose enhancing potential in cancer therapy.


Assuntos
Ouro/farmacologia , Nanopartículas Metálicas/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Citometria de Fluxo , Ouro/administração & dosagem , Ouro/farmacocinética , Humanos , Nanopartículas Metálicas/química , Dinâmica não Linear , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/química , Radiossensibilizantes/farmacocinética
10.
J Oncol ; 2019: 4878547, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32082376

RESUMO

Glioblastoma is the most common primary adult brain tumour, and despite optimal treatment, the median survival is 12-15 months. Patients with matched recurrent glioblastomas were investigated to try to find actionable mutations. Tumours were profiled using a validated DNA-based gene panel. Copy number variations (CNVs) and single nucleotide variants (SNVs) were examined, and potentially pathogenic variants and clinically actionable mutations were identified. The results revealed that glioblastomas were IDH-wildtype (IDH WT; n = 38) and IDH-mutant (IDH MUT; n = 3). SNVs in TSC2, MSH6, TP53, CREBBP, and IDH1 were variants of unknown significance (VUS) that were predicted to be pathogenic in both subtypes. IDH WT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, WNT, SHH, NOTCH, Rb, and G-protein pathways. Many tumours had BRCA1/2 (18%) variants, including confirmed somatic mutations in haemangioblastoma. IDH WT recurrent tumours had fewer pathways impacted (RTK/Ras/PI(3)K, p53, WNT, and G-protein) and CNV gains (BRCA2, GNAS, and EGFR) and losses (TERT and SMARCA4). IDH MUT tumours had SNVs that impacted RTK/Ras/PI(3)K, p53, and WNT pathways. VUS in KLK1 was possibly pathogenic in IDH MUT. Recurrent tumours also had fewer pathways (p53, WNT, and G-protein) impacted by genetic alterations. Public datasets (TCGA and GDC) confirmed the clinical significance of findings in both subtypes. Overall in this cohort, potentially actionable variation was most often identified in EGFR, PTEN, BRCA1/2, and ATM. This study underlines the need for detailed molecular profiling to identify individual GBM patients who may be eligible for novel treatment approaches. This information is also crucial for patient recruitment to clinical trials.

11.
Sci Rep ; 9(1): 4471, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872656

RESUMO

Protontherapy has emerged as more effective in the treatment of certain tumors than photon based therapies. However, significant capital and operational costs make protontherapy less accessible. This has stimulated interest in alternative proton delivery approaches, and in this context the use of laser-based technologies for the generation of ultra-high dose rate ion beams has been proposed as a prospective route. A better understanding of the radiobiological effects at ultra-high dose-rates is important for any future clinical adoption of this technology. In this study, we irradiated human skin fibroblasts-AG01522B cells with laser-accelerated protons at a dose rate of 109 Gy/s, generated using the Gemini laser system at the Rutherford Appleton Laboratory, UK. We studied DNA double strand break (DSB) repair kinetics using the p53 binding protein-1(53BP1) foci formation assay and observed a close similarity in the 53BP1 foci repair kinetics in the cells irradiated with 225 kVp X-rays and ultra- high dose rate protons for the initial time points. At the microdosimetric scale, foci per cell per track values showed a good correlation between the laser and cyclotron-accelerated protons indicating similarity in the DNA DSB induction and repair, independent of the time duration over which the dose was delivered.


Assuntos
Quebras de DNA de Cadeia Dupla , Fibroblastos/efeitos da radiação , Terapia com Prótons/instrumentação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Ciclotrons/instrumentação , Relação Dose-Resposta à Radiação , Fibroblastos/química , Fibroblastos/citologia , Humanos , Lasers , Estudos Prospectivos , Terapia com Prótons/efeitos adversos
12.
Oncogene ; 26(7): 993-1002, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16909103

RESUMO

Radiotherapy is an important treatment for patients suffering from high-grade malignant gliomas. Non-targeted (bystander) effects may influence these cells' response to radiation and the investigation of these effects may therefore provide new insights into mechanisms of radiosensitivity and responses to radiotherapy as well as define new targets for therapeutic approaches. Normal primary human astrocytes (NHA) and T98G glioma cells were irradiated with helium ions using the Gray Cancer Institute microbeam facility targeting individual cells. Irradiated NHA and T98G glioma cells generated signals that induced gammaH2AX foci in neighbouring non-targeted bystander cells up to 48 h after irradiation. gammaH2AX bystander foci were also observed in co-cultures targeting either NHA or T98G cells and in medium transfer experiments. Dimethyl sulphoxide, Filipin and anti-transforming growth factor (TGF)-beta 1 could suppress gammaH2AX foci in bystander cells, confirming that reactive oxygen species (ROS) and membrane-mediated signals are involved in the bystander signalling pathways. Also, TGF-beta 1 induced gammaH2AX in an ROS-dependent manner similar to bystander foci. ROS and membrane signalling-dependent differences in bystander foci induction between T98G glioma cells and normal human astrocytes have been observed. Inhibition of ataxia telangiectasia mutated (ATM) protein and DNA-PK could not suppress the induction of bystander gammaH2AX foci whereas the mutation of ATM- and rad3-related (ATR) abrogated bystander foci induction. Furthermore, ATR-dependent bystander foci induction was restricted to S-phase cells. These observations may provide additional therapeutic targets for the exploitation of the bystander effect.


Assuntos
Astrócitos/efeitos da radiação , Efeito Espectador/efeitos da radiação , Proteínas de Ciclo Celular/fisiologia , Glioma/radioterapia , Histonas/biossíntese , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Astrócitos/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/efeitos da radiação , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Glioma/metabolismo , Glioma/patologia , Histonas/efeitos da radiação , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/efeitos da radiação , Fase S/genética , Fase S/fisiologia , Fase S/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação
13.
Clin Oncol (R Coll Radiol) ; 30(5): 285-292, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29454504

RESUMO

With the current UK expansion of proton therapy there is a great opportunity for clinical oncologists to develop a translational interest in the associated scientific base and clinical results. In particular, the underpinning controversy regarding the conversion of photon dose to proton dose by the relative biological effectiveness (RBE) must be understood, including its important implications. At the present time, the proton prescribed dose includes an RBE of 1.1 regardless of tissue, tumour and dose fractionation. A body of data has emerged against this pragmatic approach, including a critique of the existing evidence base, due to choice of dose, use of only acute-reacting in vivo assays, analysis methods and the reference radiations used to determine the RBE. Modelling systems, based on the best available scientific evidence, and which include the clinically useful biological effective dose (BED) concept, have also been developed to estimate proton RBEs for different dose and linear energy transfer (LET) values. The latter reflect ionisation density, which progressively increases along each proton track. Late-reacting tissues, such as the brain, where α/ß = 2 Gy, show a higher RBE than 1.1 at a low dose per fraction (1.2-1.8 Gy) at LET values used to cover conventional target volumes and can be much higher. RBE changes with tissue depth seem to vary depending on the method of beam delivery used. To reduce unexpected toxicity, which does occasionally follow proton therapy, a more rational approach to RBE allocation, using a variable RBE that depends on dose per fraction and the tissue and tumour radiobiological characteristics such as α/ß, is proposed.


Assuntos
Neoplasias/radioterapia , Terapia com Prótons/métodos , Radiobiologia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Eficiência Biológica Relativa , Humanos
14.
Radiat Prot Dosimetry ; 122(1-4): 271-4, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17251249

RESUMO

Recent experimental evidence has challenged the paradigm according to which radiation traversal through the nucleus of a cell is a prerequisite for producing genetic changes or biological responses. Thus, unexposed cells in the vicinity of directly irradiated cells or recipient cells of medium from irradiated cultures can also be affected. The aim of the present study was to evaluate, by means of the medium transfer technique, whether interleukin-8 and its receptor (CXCR1) may play a role in the bystander effect after gamma irradiation of T98G cells in vitro. In fact the cell specificity in inducing the bystander effect and in receiving the secreted signals that has been described suggests that not only the ability to release the cytokines but also the receptor profiles are likely to modulate the cell responses and the final outcome. The dose and time dependence of the cytokine release into the medium, quantified using an enzyme linked immunosorbent assay, showed that radiation causes alteration in the release of interleukin-8 from exposed cells in a dose-independent but time-dependent manner. The relative receptor expression was also affected in exposed and bystander cells.


Assuntos
Efeito Espectador/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Raios gama , Glioblastoma/metabolismo , Glioblastoma/patologia , Interleucina-8/metabolismo , Receptores de Interleucina-8/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Doses de Radiação , Tolerância a Radiação/fisiologia , Tolerância a Radiação/efeitos da radiação
15.
Phys Med Biol ; 61(15): 5529-46, 2016 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-27384459

RESUMO

The aim of this work was to track and verify the delivery of respiratory-gated irradiations, performed with three versions of TrueBeam linac, using a novel phantom arrangement that combined the OCTAVIUS(®) SRS 1000 array with a moving platform. The platform was programmed to generate sinusoidal motion of the array. This motion was tracked using the real-time position management (RPM) system and four amplitude gating options were employed to interrupt MV beam delivery when the platform was not located within set limits. Time-resolved spatial information extracted from analysis of x-ray fluences measured by the array was compared to the programmed motion of the platform and to the trace recorded by the RPM system during the delivery of the x-ray field. Temporal data recorded by the phantom and the RPM system were validated against trajectory log files, recorded by the linac during the irradiation, as well as oscilloscope waveforms recorded from the linac target signal. Gamma analysis was employed to compare time-integrated 2D x-ray dose fluences with theoretical fluences derived from the probability density function for each of the gating settings applied, where gamma criteria of 2%/2 mm, 1%/1 mm and 0.5%/0.5 mm were used to evaluate the limitations of the RPM system. Excellent agreement was observed in the analysis of spatial information extracted from the SRS 1000 array measurements. Comparisons of the average platform position with the expected position indicated absolute deviations of <0.5 mm for all four gating settings. Differences were observed when comparing time-resolved beam-on data stored in the RPM files and trajectory logs to the true target signal waveforms. Trajectory log files underestimated the cycle time between consecutive beam-on windows by 10.0 ± 0.8 ms. All measured fluences achieved 100% pass-rates using gamma criteria of 2%/2 mm and 50% of the fluences achieved pass-rates >90% when criteria of 0.5%/0.5 mm were used. Results using this novel phantom arrangement indicate that the RPM system is capable of accurately gating x-ray exposure during the delivery of a fixed-field treatment beam.


Assuntos
Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Respiração , Humanos , Movimento (Física) , Aceleradores de Partículas , Imagens de Fantasmas , Dosagem Radioterapêutica , Fatores de Tempo
16.
Biochim Biophys Acta ; 887(1): 13-22, 1986 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-3011122

RESUMO

DNA single-strand breaks (about 200-300 per genome) were transiently detected during the first hour when HeLa cells were incubated for up to 24 h with 100 microM methotrexate. There was an expected increase in ADPribosyltransferase activity, which reached a maximum 2-3-fold stimulation at 3 h but which was still greater than in control cells after 24 h. When hypoxanthine (25 microM) was present in the incubations together with the methotrexate the transferase was no longer activated, although basal, control levels of activity were still present. DNA strand breaks were reduced in number but were still just detectable under these conditions. Cellular NAD+ levels were mostly unaffected by the various drug treatments, except for a small transient decrease after 1 h, possibly as a result of the transferase activation. Methotrexate did not cause an increase in the rate of ADPribose degradation. Degradation of ADPribose residues labelled in a preincubation period in permeabilized cells was more extensive at pH 6.0 was a 50% loss of acid-insoluble radioactivity in 30 min at 26 degrees C. At pH 8.0 the loss did not exceed 30-35% even after 90 min incubation. The activation of the transferase is reflected in a general increase in protein ADPribosylation detected by autoradiography of 32P-labelled proteins in 6.25-18.25%T gradient acrylamide gels. There were three major acceptors with molecular masses of 17, 100 and over 100 kDa, which could be respectively a histone, a transferase-derived peptide fragment and the transferase itself. When ADPribosyltransferase was inhibited with 3-amino-benzamide DNA single-strand breaks were no longer detected. However, this had no observably signficant effect on the kinetics of loss of cell viability (from Trypan blue uptake), cell number or colony-forming ability. Similar results are observed in most cases when the activation of the transferase, resulting from the incubation of cells with methotrexate, is inhibited by hypoxanthine. We conclude from such observations that the enhanced protein ADPribosylation seen in the cells exposed to methotrexate is a direct consequence of drug-exposure, but does not have any significant influence over the course of events leading ultimately to cell death.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteínas de Neoplasias/metabolismo , Açúcares de Nucleosídeo Difosfato/metabolismo , Nucleotidiltransferases/metabolismo , Núcleo Celular/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Células HeLa/citologia , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Humanos , Cinética , Metotrexato , Peso Molecular , NAD/metabolismo , Proteínas de Neoplasias/isolamento & purificação , Poli(ADP-Ribose) Polimerases
17.
Radiat Res ; 164(1): 73-85, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15966767

RESUMO

The rejoining kinetics of double-stranded DNA fragments, along with measurements of residual damage after postirradiation incubation, are often used as indicators of the biological relevance of the damage induced by ionizing radiation of different qualities. Although it is widely accepted that high-LET radiation-induced double-strand breaks (DSBs) tend to rejoin with kinetics slower than low-LET radiation-induced DSBs, possibly due to the complexity of the DSB itself, the nature of a slowly rejoining DSB-containing DNA lesion remains unknown. Using an approach that combines pulsed-field gel electrophoresis (PFGE) of fragmented DNA from human skin fibroblasts and a recently developed Monte Carlo simulation of radiation-induced DNA breakage and rejoining kinetics, we have tested the role of DSB-containing DNA lesions in the 8-kbp-5.7-Mbp fragment size range in determining the DSB rejoining kinetics. It is found that with low-LET X rays or high-LET alpha particles, DSB rejoining kinetics data obtained with PFGE can be computer-simulated assuming that DSB rejoining kinetics does not depend on spacing of breaks along the chromosomes. After analysis of DNA fragmentation profiles, the rejoining kinetics of X-ray-induced DSBs could be fitted by two components: a fast component with a half-life of 0.9+/-0.5 h and a slow component with a half-life of 16+/-9 h. For alpha particles, a fast component with a half-life of 0.7+/-0.4 h and a slow component with a half-life of 12+/-5 h along with a residual fraction of unrepaired breaks accounting for 8% of the initial damage were observed. In summary, it is shown that genomic proximity of breaks along a chromosome does not determine the rejoining kinetics, so the slowly rejoining breaks induced with higher frequencies after exposure to high-LET radiation (0.37+/-0.12) relative to low-LET radiation (0.22+/-0.07) can be explained on the basis of lesion complexity at the nanometer scale, known as locally multiply damaged sites.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos da radiação , DNA/química , DNA/efeitos da radiação , Fibroblastos/fisiologia , Fibroblastos/efeitos da radiação , Modelos Químicos , Modelos Genéticos , Células Cultivadas , Simulação por Computador , Relação Dose-Resposta à Radiação , Humanos , Transferência Linear de Energia , Modelos Estatísticos , Método de Monte Carlo , Doses de Radiação
18.
Br J Radiol ; 88(1045): 20140634, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25387486

RESUMO

Radiation biology is being transformed by the implementation of small animal image-guided precision radiotherapy into pre-clinical research programmes worldwide. We report on the current status and developments of the small animal radiotherapy field, suggest criteria for the design and execution of effective studies and contend that this powerful emerging technology, used in combination with relevant small animal models, holds much promise for translational impact in radiation oncology.


Assuntos
Pesquisa Biomédica , Neoplasias Experimentais/radioterapia , Radioterapia Guiada por Imagem/métodos , Animais
19.
Radiat Prot Dosimetry ; 166(1-4): 110-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25877536

RESUMO

Stem cells are fundamental to the development of any tissue or organism via their ability to self-renew, which is aided by their unlimited proliferative capacity and their ability to produce fully differentiated offspring, often from multiple lineages. Stems cells are long lived and have the potential to accumulate mutations, including in response to radiation exposure. It is thought that stem cells have the potential to be induced into a cancer stem cell phenotype and that these may play an important role in resistance to radiotherapy. For radiation-induced carcinogenesis, the role of targeted and non-targeted effects is unclear with tissue or origin being important. Studies of genomic instability and bystander responses have shown consistent effects in haematopoietic models. Several models of radiation have predicted that stem cells play an important role in tumour initiation and that bystander responses could play a role in proliferation and self-renewal.


Assuntos
Efeito Espectador/efeitos da radiação , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/efeitos da radiação , Dano ao DNA/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Células-Tronco/efeitos da radiação , Humanos , Tolerância a Radiação
20.
Radiat Res ; 134(1): 102-6, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8475248

RESUMO

Isolated plasmid pBR322 DNA was irradiated in the gas explosion apparatus in the presence of 10 mmol dm-3 GSH. By varying the time of the oxygen shot relative to the 5-ns pulse of electrons, the chemical repair kinetics of the oxygen-dependent free-radical precursors of DNA single- and double-strand breaks (SSBs and DSBs) can be determined. The first-order repair rate of the SSB precursors was 1370 s-1 in comparison to 2900 s-1 for DSB precursors. Under these conditions the oxygen enhancement ratio for SSBs was 3.0 in comparison to 7.5 for DSBs. This twofold difference in chemical repair rate may be interpreted on the basis of the free-radical precursor of a DSB consisting of two radicals, one on either strand of the DNA. With the chemical repair of one or other of these radicals by hydrogen atom donation from GSH, a DSB is not produced. This process will occur at twice the rate of the chemical repair of an SSB precursor consisting of a single radical. These data are consistent with the concept that DSBs are formed at the sites of clustered energy depositions with the production of a paired radical.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Bacteriano/efeitos da radiação , Plasmídeos/genética , DNA/efeitos dos fármacos , DNA/efeitos da radiação , DNA Bacteriano/efeitos dos fármacos , DNA de Cadeia Simples/efeitos dos fármacos , DNA de Cadeia Simples/efeitos da radiação , Relação Dose-Resposta à Radiação , Radicais Livres , Glutationa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA