Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 18(9): 6648-56, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26868637

RESUMO

Surface-active organic molecules at the liquid-vapor interface are of great importance in atmospheric science. Therefore, we studied the surface behavior of alcohol isomers with different chain lengths (C4-C6) in aqueous solution with surface- and chemically sensitive X-ray photoelectron spectroscopy (XPS), which reveals information about the surface structure on a molecular level. Gibbs free energies of adsorption and surface concentrations are determined from the XPS results using a standard Langmuir adsorption isotherm model. The free energies of adsorption, ranging from around -15 to -19 kJ mol(-1) (C4-C6), scale linearly with the number of carbon atoms within the alcohols with ΔGAds per -CH2-≈-2 kJ mol(-1). While for the linear alcohols, surface concentrations lie around 2.4 × 10(14) molecules per cm(2) at the bulk concentrations where monolayers are formed, the studied branched alcohols show lower surface concentrations of around 1.6 × 10(14) molecules per cm(2), both of which are in line with the molecular structure and their orientation at the interface. Interestingly, we find that there is a maximum in the surface enrichment factor for linear alcohols at low concentrations, which is not observed for the shorter branched alcohols. This is interpreted in terms of a cooperative effect, which we suggest to be the result of more effective van der Waals interactions between the linear alcohol alkyl chains at the aqueous surface, making it energetically even more favorable to reside at the liquid-vapor interface.

2.
Phys Chem Chem Phys ; 17(21): 14036-44, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25953683

RESUMO

Position isomerism is ubiquitous in atmospheric oxidation reactions. Therefore, we have compared surface-active oxygenated amphiphilic isomers (1- and 3-pentanol) at the aqueous surface with surface- and chemically sensitive X-ray photoelectron spectroscopy (XPS), which reveals information about the surface structure on a molecular level. The experimental data are complemented with molecular dynamics (MD) simulations. A concentration-dependent orientation and solvation of the amphiphiles at the aqueous surface is observed. At bulk concentrations as low as around 100 mM, a monolayer starts to form for both isomers, with the hydroxyl groups pointing towards the bulk water and the alkyl chains pointing towards the vacuum. The monolayer (ML) packing density of 3-pentanol is approx. 70% of the one observed for 1-pentanol, with a molar surface concentration that is approx. 90 times higher than the bulk concentration for both molecules. The molecular area at ML coverage (≈100 mM) was calculated to be around 32 ± 2 Å(2) per molecule for 1-pentanol and around 46 ± 2 Å(2) per molecule for 3-pentanol, which results in a higher surface concentration (molecules per cm(2)) for the linear isomer. In general we conclude therefore that isomers - with comparable surface activities - that have smaller molecular areas will be more abundant at the interface in comparison to isomers with larger molecular areas, which might be of crucial importance for the understanding of key properties of aerosols, such as evaporation and uptake capabilities as well as their reactivity.


Assuntos
Pentanóis/química , Tensoativos/química , Água/química , Adsorção , Isomerismo , Simulação de Dinâmica Molecular , Espectroscopia Fotoeletrônica , Vapor/análise , Propriedades de Superfície
3.
J Phys Chem Lett ; 10(21): 6478-6483, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31589452

RESUMO

Dimethyl sulfide (DMS), produced by marine organisms, represents the most abundant, biogenic sulfur emission into the Earth's atmosphere. The gas-phase degradation of DMS is mainly initiated by the reaction with the OH radical forming first CH3SCH2O2 radicals from the dominant H-abstraction channel. It is experimentally shown that these peroxy radicals undergo a two-step isomerization process finally forming a product consistent with the formula HOOCH2SCHO. The isomerization process is accompanied by OH recycling. The rate-limiting first isomerization step, CH3SCH2O2 → CH2SCH2OOH, followed by O2 addition, proceeds with k = (0.23 ± 0.12) s-1 at 295 ± 2 K. Competing bimolecular CH3SCH2O2 reactions with NO, HO2, or RO2 radicals are less important for trace-gas conditions over the oceans. Results of atmospheric chemistry simulations demonstrate the predominance (≥95%) of CH3SCH2O2 isomerization. The rapid peroxy radical isomerization, not yet considered in models, substantially changes the understanding of DMS's degradation processes in the atmosphere.

4.
J Adv Model Earth Syst ; 10(12): 3233-3251, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31007837

RESUMO

Bulk-surface partitioning of surface active species affects both cloud droplet activation by aerosol particles and heterogeneous atmospheric chemistry. Various approaches are given in the literature to capture this effect in atmospheric models. Here we present a simple, yet physically self-contained, monolayer model for prediction of both composition and thickness of the surface layer of an aqueous droplet. The monolayer surface model is based on assuming a finite surface layer and mass balance of all species within the droplet. Model predictions are presented for binary and ternary aqueous surfactant model systems and compared to both experimental and model data from the literature and predictions using a common Gibbsian model approach. Deviations from Gibbsian surface thermodynamics due to volume constraints imposed by the finite monolayer lead to stronger predicted surface tension reduction at smaller droplet sizes with the monolayer model. Process dynamics of the presented monolayer model are also contrasted to other recently proposed approaches to treating surface partitioning in droplets, with different underlying assumptions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA