Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proteomics ; 24(12-13): e2200335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38683823

RESUMO

Recent advancements in omics techniques have revolutionised the study of biological systems, enabling the generation of high-throughput biomolecular data. These innovations have found diverse applications, ranging from personalised medicine to forensic sciences. While the investigation of multiple aspects of cells, tissues or entire organisms through the integration of various omics approaches (such as genomics, epigenomics, metagenomics, transcriptomics, proteomics and metabolomics) has already been established in fields like biomedicine and cancer biology, its full potential in forensic sciences remains only partially explored. In this review, we have presented a comprehensive overview of state-of-the-art analytical platforms employed in omics research, with specific emphasis on their application in the forensic field for the identification of the cadaver and the cause of death. Moreover, we have conducted a critical analysis of the computational integration of omics approaches, and highlighted the latest advancements in employing multi-omics techniques for forensic investigations.


Assuntos
Ciências Forenses , Genômica , Metabolômica , Proteômica , Humanos , Proteômica/métodos , Metabolômica/métodos , Ciências Forenses/métodos , Genômica/métodos , Epigenômica/métodos , Biologia Computacional/métodos , Metagenômica/métodos , Multiômica
2.
J Proteome Res ; 23(5): 1844-1858, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38621258

RESUMO

The application of proteomic analysis to forensic skeletal remains has gained significant interest in improving biological and chronological estimations in medico-legal investigations. To enhance the applicability of these analyses to forensic casework, it is crucial to maximize throughput and proteome recovery while minimizing interoperator variability and laboratory-induced post-translational protein modifications (PTMs). This work compared different workflows for extracting, purifying, and analyzing bone proteins using liquid chromatography with tandem mass spectrometry (LC-MS)/MS including an in-StageTip protocol previously optimized for forensic applications and two protocols using novel suspension-trap technology (S-Trap) and different lysis solutions. This study also compared data-dependent acquisition (DDA) with data-independent acquisition (DIA). By testing all of the workflows on 30 human cortical tibiae samples, S-Trap workflows resulted in increased proteome recovery with both lysis solutions tested and in decreased levels of induced deamidations, and the DIA mode resulted in greater sensitivity and window of identification for the identification of lower-abundance proteins, especially when open-source software was utilized for data processing in both modes. The newly developed S-Trap protocol is, therefore, suitable for forensic bone proteomic workflows and, particularly when paired with DIA mode, can offer improved proteomic outcomes and increased reproducibility, showcasing its potential in forensic proteomics and contributing to achieving standardization in bone proteomic analyses for forensic applications.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Humanos , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Osso e Ossos/química , Osso e Ossos/metabolismo , Proteoma/análise , Fluxo de Trabalho , Processamento de Proteína Pós-Traducional , Software
3.
J Proteome Res ; 21(5): 1285-1298, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35316604

RESUMO

Bone is a hard biological tissue and a precious reservoir of information in forensic investigations as it retains key biomolecules commonly used for identification purposes. Bone proteins have recently attracted significant interest for their potential in estimating post-mortem interval (PMI) and age at death (AAD). However, the preservation of such proteins is highly dependent on intrinsic and extrinsic factors that can hinder the potential application of molecular techniques to forensic sciences. The present study aims at investigating the effects that two commonly used types of burial practices (entombment and inhumation) have on bone protein survival. The sample consists of 14 exhumed individuals from cemeteries in Southern Italy with different AADs (29-85 years) and PMIs (1-37 years). LC-MS/MS analyses show that 16 proteins are better preserved under the entombed conditions and 4 proteins are better preserved under the inhumed conditions, whereas no clear differences are detected for post-translational protein modifications. Furthermore, several potential "stable" protein markers (i.e., proteins not affected by the burial environment) are identified for PMI and AAD estimation. Overall, these results show that the two burial environments play a role in the differential preservation of noncollagenous proteins, confirming the potential of LC-MS/MS-based proteomics in forensic sciences.


Assuntos
Mudanças Depois da Morte , Proteoma , Biomarcadores/análise , Cadáver , Cromatografia Líquida , Humanos , Espectrometria de Massas em Tandem
4.
J Proteome Res ; 20(3): 1754-1769, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529527

RESUMO

Isotope analyses are some of the most common analytical methods applied to ancient bone, aiding the interpretation of past diets and chronology. For this, the evaluation of "collagen yield" (as defined in radiocarbon dating and stable isotope research) is a routine step that allows for the selection of specimens that are deemed adequate for subsequent analyses, with samples containing less than ∼1% "collagen yield" normally being used for isotopic analysis but discounted for radiocarbon dating. The aims of this study were to use proteomic methods of MALDI-TOF (matrix assisted laser desorption ionization time-of-fligh mass spectrometry) and LC-ESI-MS/MS (liquid chromatography electrospray ionization tandem mass spectrometry) to investigate the endogeneity of the dominant proteinaceous biomolecules within samples that are typically considered to contain poorly preserved protein. Taking 29 archaeological samples, we evaluated the proteome variability between different acid-soluble fractions removed prior to protein gelatinization and considered waste as part of the radiocarbon dating process. We then correlated these proteomes against the commonly used "collagen yield" proxy for preservation. We found that these waste fractions contained a significant amount of both collagenous and noncollagenous proteins (NCPs) but that the abundance of these was not correlated with the acquired "collagen yield". Rather than a depleted protein load as would be expected from a low "collagen yield", the variety of the extracted NCPs was comparable with that commonly obtained from ancient samples and included informative proteins useful for species identification, phylogenetic studies, and potentially even for isotopic analyses, given further method developments. Additionally, we did not observe any correlation between "collagen yield" and peptide mass fingerprint success or between the different fractions taken from the same sample but at different radiocarbon pretreatment stages. Overall, these findings highlight the value in retaining and analyzing sample fractions that are otherwise discarded as waste during the radiocarbon dating process but more importantly, that low "collagen yield" specimens that are often misinterpreted by archaeologists as being devoid of protein can still yield useful molecular sequence-based information.


Assuntos
Proteoma , Proteômica , Arqueologia , Osso e Ossos , Colágeno , Filogenia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
5.
J Proteome Res ; 20(5): 2533-2546, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33683123

RESUMO

Bone proteomic studies using animal proxies and skeletonized human remains have delivered encouraging results in the search for potential biomarkers for precise and accurate post-mortem interval (PMI) and the age-at-death (AAD) estimation in medico-legal investigations. The development of forensic proteomics for PMI and AAD estimation is in critical need of research on human remains throughout decomposition, as currently the effects of both inter-individual biological differences and taphonomic alteration on the survival of human bone protein profiles are unclear. This study investigated the human bone proteome in four human body donors studied throughout decomposition outdoors. The effects of ageing phenomena (in vivo and post-mortem) and intrinsic and extrinsic variables on the variety and abundancy of the bone proteome were assessed. Results indicate that taphonomic and biological variables play a significant role in the survival of proteins in bone. Our findings suggest that inter-individual and inter-skeletal differences in bone mineral density (BMD) are important variables affecting the survival of proteins. Specific proteins survive better within the mineral matrix due to their mineral-binding properties. The mineral matrix likely also protects these proteins by restricting the movement of decomposer microbes. New potential biomarkers for PMI estimation and AAD estimation were identified. Future development of forensic bone proteomics should include standard measurement of BMD and target a combination of different biomarkers.


Assuntos
Proteoma , Proteômica , Animais , Autopsia , Osso e Ossos , Humanos , Mudanças Depois da Morte
6.
J Proteome Res ; 19(5): 2122-2135, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32242669

RESUMO

Methods currently available to estimate the postmortem submerged interval (PMSI) of cadavers in water suffer from poor accuracy, being mostly based on morphological examination of the remains. Proteins present within bones have recently attracted more attention from researchers interested in the estimation of the postmortem interval (PMI) in terrestrial environments. Despite the great potential of proteomic methods for PMI estimation, their application to aquatic environments has not yet been explored. In this study, we examined whether four different types of aquatic environment affected the proteome of mice bones with increasing PMSIs. Results showed that increasing PMSIs can influence the protein abundances more than the different types of water. In particular, the abundance of the muscle protein fructose-bisphosphate aldolase A constantly decreased with increasing PMSIs. Additionally, the protein peptidyl-prolyl cis-trans isomerase showed a significant decrease between controls and aquatic environments. Furthermore, the coagulation factor VII was deamidated only in submerged samples and not in terrestrial controls. Finally, fetuin-A was significantly more deamidated in pond water compared to the other aquatic environments. Overall, this study identified novel potential biomarker candidates that would be useful for the estimation of the PMSI and for the characterization of the type of water involved in criminal investigations.


Assuntos
Mudanças Depois da Morte , Proteômica , Animais , Autopsia , Cadáver , Medicina Legal , Camundongos
7.
Proc Natl Acad Sci U S A ; 114(40): 10606-10611, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28874524

RESUMO

Previous dating of the Vi-207 and Vi-208 Neanderthal remains from Vindija Cave (Croatia) led to the suggestion that Neanderthals survived there as recently as 28,000-29,000 B.P. Subsequent dating yielded older dates, interpreted as ages of at least ∼32,500 B.P. We have redated these same specimens using an approach based on the extraction of the amino acid hydroxyproline, using preparative high-performance liquid chromatography (Prep-HPLC). This method is more efficient in eliminating modern contamination in the bone collagen. The revised dates are older than 40,000 B.P., suggesting the Vindija Neanderthals did not live more recently than others across Europe, and probably predate the arrival of anatomically modern humans in Eastern Europe. We applied zooarchaeology by mass spectrometry (ZooMS) to find additional hominin remains. We identified one bone that is Neanderthal, based on its mitochondrial DNA, and dated it directly to 46,200 ± 1,500 B.P. We also attempted to date six early Upper Paleolithic bone points from stratigraphic units G1, Fd/d+G1 and Fd/d, Fd. One bone artifact gave a date of 29,500 ± 400 B.P., while the remainder yielded no collagen. We additionally dated animal bone samples from units G1 and G1-G3 These dates suggest a co-occurrence of early Upper Paleolithic osseous artifacts, particularly split-based points, alongside the remains of Neanderthals is a result of postdepositional mixing, rather than an association between the two groups, although more work is required to show this definitively.


Assuntos
Cavernas , Homem de Neandertal , Datação Radiométrica/métodos , Animais , Croácia , Feminino , Fósseis , Masculino
8.
J Proteome Res ; 17(3): 1000-1013, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29356547

RESUMO

Proteomic analyses are becoming more widely used in archeology not only due to the greater preservation of proteins in ancient specimens than DNA but also because they can offer different information, particularly relating to compositional preservation and potentially a means to estimate biological and geological age. However, it remains unclear to what extent different burial environments impact these aspects of proteome decay. Teeth have to date been much less studied than bone but are ideal to explore how proteins decay with time due to the negligible turnover that occurs in dentine relative to bone. We investigated the proteome variability and deamidation levels of different sections of molar teeth from archeological bovine mandibles as well as their mandibular bone. We obtained a greater yield of proteins from the crown of the teeth but did not find differences between the different molars analyzed within each mandible. We also obtained the best variety of protein from a well-preserved mandible that was not the youngest one in terms of chronological age, showing the influence of the preservation conditions on the final proteomic outcome. Intriguingly, we also noticed an increase in abundance levels of fetuin-A in biologically younger mandibles as reported previously, but the opposite trend in tooth dentine. Interestingly, we observed higher glutamine deamidation levels in teeth from the geologically oldest mandible despite it being the biologically youngest specimen, showing that the archeological age strongly impacts on the level of deamidations observed, much more so than biological aging. This indicates that the glutamine deamidation ratio of selected peptides may act as a good predictor of the relative geochronological age of archeological specimens.


Assuntos
Dentina/química , Mandíbula/química , Dente Molar/química , Preservação Biológica/história , Proteoma/química , Proteômica/métodos , Sequência de Aminoácidos , Animais , Arqueologia , Bovinos , Ontologia Genética , História Antiga , Humanos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Anotação de Sequência Molecular , Paleontologia , Proteólise , Proteoma/isolamento & purificação , Proteômica/instrumentação , Fatores de Tempo , alfa-2-Glicoproteína-HS/história , alfa-2-Glicoproteína-HS/isolamento & purificação
9.
J Proteome Res ; 16(2): 447-458, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28152590

RESUMO

Proteomics methods are being increasingly used to study archaeological and palaeontological bone, assisting in species identification and phylogenetic studies as well as improving our understanding of bone diagenesis. More recently, there are developing interests in the study of post-translational modifications, some of which are potentially diagnostic of decay, but none of the previous extraction methods have been developed in light of this. To be able to record close to natural deamidation levels of samples, an extraction procedure should minimize laboratory-induced decay, such as asparagine and glutamine deamidations, which are considered most strongly related with decay and known to occur frequently with standard laboratory procedures. Here we tested numerous methods to identify an optimal approach of extracting proteins from bone while minimizing artificial decay. Using a weak acid to partially demineralize the bone sample, then subsequent incubation of the acid insoluble fraction with guanidine hydrochloride and enzymatic digestion in ammonium acetate, we observed an ∼50% reduction in deamidation while also substantially decreasing the protocol length. We propose this optimized method as appropriate for studies of archaeological, palaeontological, as well as potentially forensic investigations using proteomics where decay measurements could act as "molecular timers".


Assuntos
Osso e Ossos/química , Extração Líquido-Líquido/métodos , Proteínas/isolamento & purificação , Proteômica/métodos , Acetatos/química , Animais , Asparagina/química , Bovinos , Ácido Edético/química , Medicina Legal/métodos , Formiatos/química , Glutamina/química , Guanidina/química , Humanos , Extração Líquido-Líquido/normas , Paleontologia/métodos , Proteínas/química , Proteólise , Fatores de Tempo
10.
J Proteome Res ; 16(5): 2016-2029, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28436665

RESUMO

Proteomic methods are acquiring greater importance in archaeology and palaeontology due to the longevity of proteins in skeletal remains. There are also developing interests in forensic applications, offering the potential to shed light on post-mortem intervals and age at death estimation. However, our understanding of intra- and interskeletal proteome variations is currently severely limited. Here, we evaluated the proteomes obtained from five distinct subsamples of different skeletal elements from buried pig carcasses to ascertain the extent of variation within and between individuals. We found that reproducibility of data depends on the skeletal element used for sampling and that intrabone differences exceed those observed between the same skeletal element sampled from different individuals. Interestingly, the abundance of several serum proteins appeared to correlate with biological age with relative concentrations of alpha-1 antitrypsin and chromogranin-A increasing and those of fetuin-A decreasing. We also observed a surprising level of divergence in data from different LC-MS/MS runs on aliquots of similar samples analyzed months apart, adding constraints to the comparison of results of such methods across different studies.


Assuntos
Osso e Ossos/química , Proteoma/análise , Proteômica/métodos , Animais , Mudanças Depois da Morte , Reprodutibilidade dos Testes , Esqueleto/química , Suínos , Espectrometria de Massas em Tandem
11.
Front Microbiol ; 15: 1392716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803371

RESUMO

Introduction: The accurate estimation of postmortem interval (PMI), the time between death and discovery of the body, is crucial in forensic science investigations as it impacts legal outcomes. PMI estimation in extremely cold environments becomes susceptible to errors and misinterpretations, especially with prolonged PMIs. This study addresses the lack of data on decomposition in extreme cold by providing the first overview of decomposition in such settings. Moreover, it proposes the first postmortem microbiome prediction model for PMI estimation in cold environments, applicable even when the visual decomposition is halted. Methods: The experiment was conducted on animal models in the second-coldest region in the United States, Grand Forks, North Dakota, and covered 23 weeks, including the winter months with temperatures as low as -39°C. Random Forest analysis models were developed to estimate the PMI based either uniquely on 16s rRNA gene microbial data derived from nasal swabs or based on both microbial data and measurable environmental parameters such as snow depth and outdoor temperatures, on a total of 393 samples. Results: Among the six developed models, the best performing one was the complex model based on both internal and external swabs. It achieved a Mean Absolute Error (MAE) of 1.36 weeks and an R2 value of 0.91. On the other hand, the worst performing model was the minimal one that relied solely on external swabs. It had an MAE of 2.89 weeks and an R2 of 0.73. Furthermore, among the six developed models, the commonly identified predictors across at least five out of six models included the following genera: Psychrobacter (ASV1925 and ASV1929), Carnobacterium (ASV2872) and Pseudomonas (ASV1863). Discussion: The outcome of this research provides the first microbial model able to predict PMI with an accuracy of 9.52 days over a six-month period of extreme winter conditions.

12.
Genes (Basel) ; 15(3)2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540435

RESUMO

Considering the growing importance of microbiome analyses in forensics for identifying individuals, this study explores the transfer of the skin microbiome onto clothing, its persistence on fabrics over time, and its transferability from the environment and between different garments. Furthermore, this project compares three specific QIAGEN microbiome extraction kits to test their extraction efficiency on fabric samples. Additionally, this study aims to check if these extracts contain human DNA, providing a chance to obtain more information from the same evidence for personal identification. The results obtained show: (1) variations in the skin microbiome between the volunteers, potentially due to their different sex; (2) differences in microbial composition between worn and unworn clothing; (3) the influence of the environment on the microbial signature of unworn clothing; (4) the potential use of certain phyla as biomarkers to differentiate between worn and unworn garments, even over extended periods; (5) a tendency towards extraction biases in the QIAampMP® DNA microbiome kit among the three tested ones; and (6) none of the extraction kits allow for the typing of human genetic profiles suitable for comparison. In conclusion, our study offers supplementary insights into the potential utility of time-transferred microbiome analysis on garments for forensic applications.


Assuntos
Vestuário , Microbiota , Humanos , Pele , DNA Ribossômico , Microbiota/genética
13.
J Proteomics ; 271: 104754, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36243311

RESUMO

The bone proteome, i.e., the 'osteo-ome', is a rich source of information for forensic studies. There have been advances in the study of biomolecule biomarkers for age-at-death (AAD) and post-mortem interval (PMI) estimations, by looking at changes in protein abundance and post-translational modifications (PTMs) at the peptide level. However, the extent to which other post-mortem factors alter the proteome, including 'maceration' procedures adopted in human taphonomy facilities (HTFs) to clean bones for osteological collections, is poorly understood. This pilot study aimed to characterise the impact of these 'cleaning' methods for de-fleshing skeletons on bone biomolecules, and therefore, what further impact this may have on putative biomarkers in future investigations. Three specific maceration procedures, varying in submersion time (one week or two days) and water temperature (55 °C or 87 °C) were conducted on six bovid tibiae from three individual bovines; the proteome of fresh and macerated bones of each individual was compared. The maceration at 87 °C for two days had the greatest proteomic impact, decreasing protein relative abundances and inducing specific PTMs. Overall, these results suggest that routinely-employed maceration procedures are harsh, variable and potentially threaten the viability of discovering new forensic biomarkers in macerated skeletal remains. SIGNIFICANCE: For the first time, the application of bone proteomics in understanding maceration procedures was conducted to help address the risks for experimental confounding associated with this post-mortem cleaning technique. This pilot study demonstrates that recent advances in biomarker discovery for post-mortem interval and age-at-death estimation using bone proteomics has potential for confounding by differing and destructive bone-cleaning methods.


Assuntos
Proteoma , Proteômica , Humanos , Bovinos , Animais , Proteômica/métodos , Projetos Piloto , Mudanças Depois da Morte , Biomarcadores
14.
Forensic Sci Int Genet ; 64: 102841, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36774834

RESUMO

The human oral microbiome has primarily been studied in clinical settings and for medical purposes. More recently, oral microbial research has been incorporated into other areas of study. In forensics, research has aimed to exploit the variation in composition of the oral microbiome to answer forensic relevant topics, such as human identification and geographical provenience. Several studies have focused on the use of microbiome for continental, national, or ethnic origin evaluations. However, it is not clear how the microbiome varies between similar ethnic populations across different regions in a country. We report here a comparison of the oral microbiomes of individuals living in two regions of Italy - Lombardy and Piedmont. Oral samples were obtained by swabbing the donors' oral mucosa, and the V4 region of the 16S rRNA gene was sequenced from the extracted microbial DNA. Additionally, we compared the oral and the skin microbiome from a subset of these individuals, to provide an understanding of which anatomical region may provide more robust results that can be useful for forensic human identification. Initial analysis of the oral microbiota revealed the presence of a core oral microbiome, consisting of nine taxa shared across all oral samples, as well as unique donor characterising taxa in 31 out of 50 samples. We also identified a trend between the abundance of Proteobacteria and Bacteroidota and the smoking habits, and of Spirochaetota and Synergistota and the age of the enrolled participants. Whilst no significant differences were observed in the oral microbial diversity of individuals from Lombardy or Piedmont, we identified two bacterial families - Corynebacteriaceae and Actinomycetaceae - that showed abundance trends between the two regions. Comparative analysis of the skin and oral microbiota showed significant differences in the alpha (p = 0.0011) and beta (Pr(>F)= 9.999e-05) diversities. Analysis of skin and oral samples from the same donor further revealed that the skin microbiome contained more unique donor characterising taxa than the oral one. Overall, this study demonstrates that whilst the oral microbiome of individuals from the same country and of similar ethnicity are largely similar, there may be donor characterising taxa that might be useful for identification purposes. Furthermore, the bacterial signatures associated with certain lifestyles could provide useful information for investigative purposes. Finally, additional studies are required, the skin microbiome may be a better discriminant for human identification than the oral one.


Assuntos
Microbiota , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Bactérias/genética , Análise de Sequência de DNA , Mucosa Bucal
15.
Metabolites ; 12(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36355103

RESUMO

The study of post-mortem changes is a crucial component of forensic investigation. Human forensic taphonomic facilities (HFTFs) are the only institutions allowing the design and execution of controlled human decomposition experiments. When bodies are skeletonized, bones are normally stored in skeletal collections and used for anthropological studies. However, HFTFs apply chemical and/or thermal treatments to the remains prior bone long-term storage. These treatments are believed to alter heavily the original biochemical and molecular signature of bone material. The present study aims to evaluate the effect of these procedures on the bone metabolome and lipidome by using an animal bone model. Three intact bovine tibiae were processed using three protocols routinely applied at HFTFs, and their three counterparts were used as non-treated controls. Bone powder samples were subjected to biphasic extraction and both metabolites and lipids were analysed via liquid chromatography tandem mass-spectrometry. Results showed severe reductions in the abundances of both metabolites and lipids, and the presence of contamination introduced by cleaning agents. Despite the preliminary nature of the study, we demonstrated that the biochemical profile of bone is heavily affected by the maceration procedures. Ideally, these treatments should be avoided, or replaced by minimally invasive procedures agreed across HFTFs.

16.
Elife ; 112022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36583441

RESUMO

The combined use of multiple omics allows to study complex interrelated biological processes in their entirety. We applied a combination of metabolomics, lipidomics and proteomics to human bones to investigate their combined potential to estimate time elapsed since death (i.e., the postmortem interval [PMI]). This 'ForensOMICS' approach has the potential to improve accuracy and precision of PMI estimation of skeletonized human remains, thereby helping forensic investigators to establish the timeline of events surrounding death. Anterior midshaft tibial bone was collected from four female body donors before their placement at the Forensic Anthropology Research Facility owned by the Forensic Anthropological Center at Texas State (FACTS). Bone samples were again collected at selected PMIs (219-790-834-872days). Liquid chromatography mass spectrometry (LC-MS) was used to obtain untargeted metabolomic, lipidomic, and proteomic profiles from the pre- and post-placement bone samples. The three omics blocks were investigated independently by univariate and multivariate analyses, followed by Data Integration Analysis for Biomarker discovery using Latent variable approaches for Omics studies (DIABLO), to identify the reduced number of markers describing postmortem changes and discriminating the individuals based on their PMI. The resulting model showed that pre-placement metabolome, lipidome and proteome profiles were clearly distinguishable from post-placement ones. Metabolites in the pre-placement samples suggested an extinction of the energetic metabolism and a switch towards another source of fuelling (e.g., structural proteins). We were able to identify certain biomolecules with an excellent potential for PMI estimation, predominantly the biomolecules from the metabolomics block. Our findings suggest that, by targeting a combination of compounds with different postmortem stability, in the future we could be able to estimate both short PMIs, by using metabolites and lipids, and longer PMIs, by using proteins.


Assuntos
Lipidômica , Proteômica , Humanos , Feminino , Proteômica/métodos , Metabolômica/métodos , Mudanças Depois da Morte , Espectrometria de Massas
17.
Forensic Sci Int Genet ; 59: 102686, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35338895

RESUMO

Human DNA samples can remain unaltered for years and preserve important genetic information for forensic investigations. In fact, besides human genetic information, these extracts potentially contain additional valuable information: microbiome signatures. Forensic microbiology is rapidly becoming a significant tool for estimating post-mortem interval (PMI), and establishing cause of death and personal identity. To date, the possibility to recover unaltered microbiome signatures from human DNA extracts has not been proven. This study examines the microbiome signatures within human DNA extracts obtained from six cadavers with different PMIs, which were stored frozen for 5-16 years. Results demonstrated that the microbiome can be co-extracted with human DNA using forensic kits designed to extract the human host's DNA from different tissues and fluids during decomposition. We compared the microbial communities identified in these samples with microbial DNA recovered from two human cadavers donated to the Forensic Anthropology Center at Texas State University (FACTS) during multiple decomposition stages, to examine whether the microbial signatures recovered from "old" (up to 16 years) extracts are consistent with those identified in recently extracted microbial DNA samples. The V4 region of 16 S rRNA gene was amplified and sequenced using Illumina MiSeq for all DNA extracts. The results obtained from the human DNA extracts were compared with each other and with the microbial DNA from the FACTS samples. Overall, we found that the presence of specific microbial taxa depends on the decomposition stage, the type of tissue, and the depositional environment. We found no indications of contamination in the microbial signatures, or any alterations attributable to the long-term frozen storage of the extracts, demonstrating that older human DNA extracts are a reliable source of such microbial signatures. No shared Core Microbiome (CM) was identified amongst the total 18 samples, but we identified certain species in association with the different decomposition stages, offering potential for the use of microbial signatures co-extracted with human DNA samples for PMI estimation in future. Unveiling the new significance of older human DNA extracts brings with it important ethical-legal considerations. Currently, there are no shared legal frameworks governing the long-term storage and use of human DNA extracts obtained from crime scene evidence for additional research purposes. It is therefore important to create common protocols on the storage of biological material collected at crime scenes. We review existing legislation and guidelines, and identify some important limitations for the further development and application of forensic microbiomics.


Assuntos
Microbiota , Ácidos Nucleicos , Cadáver , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Microbiota/genética
18.
Biology (Basel) ; 10(6)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071025

RESUMO

The evaluation of bone diagenetic phenomena in archaeological timescales has a long history; however, little is known about the origins of the microbes driving bone diagenesis, nor about the extent of bone diagenesis in short timeframes-such as in forensic contexts. Previously, the analysis of non-collagenous proteins (NCPs) through bottom-up proteomics revealed the presence of potential biomarkers useful in estimating the post-mortem interval (PMI). However, there is still a great need for enhancing the understanding of the diagenetic processes taking place in forensic timeframes, and to clarify whether proteomic analyses can help to develop better models for estimating PMI reliably. To address these knowledge gaps, we designed an experiment based on whole rat carcasses, defleshed long rat bones, and excised but still-fleshed rat limbs, which were either buried in soil or exposed on a clean plastic surface, left to decompose for 28 weeks, and retrieved at different time intervals. This study aimed to assess differences in bone protein relative abundances for the various deposition modalities and intervals. We further evaluated the effects that extrinsic factors, autolysis, and gut and soil bacteria had on bone diagenesis via bottom-up proteomics. Results showed six proteins whose abundance was significantly different between samples subjected to either microbial decomposition (gut or soil bacteria) or to environmental factors. In particular, muscle- and calcium-binding proteins were found to be more prone to degradation by bacterial attack, whereas plasma and bone marrow proteins were more susceptible to exposure to extrinsic agents. Our results suggest that both gut and soil bacteria play key roles in bone diagenesis and protein decay in relatively short timescales, and that bone proteomics is a proficient resource with which to identify microbially-driven versus extrinsically-driven diagenesis.

19.
J Forensic Leg Med ; 82: 102223, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34343925

RESUMO

Human skin hosts a variety of microbes that can be transferred to surfaces ("touch microbiome"). These microorganisms can be considered as forensic markers similarly to "touch DNA". With this pilot study, we wanted to evaluate the transferability and persistence of the "touch microbiome" on a surface after the deposition of a fingerprint and its exposure for 30 days at room temperature. Eleven volunteers were enrolled in the study. Skin microbiome samples were collected by swabbing the palm of their hands; additionally, donors were asked to touch a glass microscope slide to deposit their fingerprints, that were then swabbed. Both human and microbial DNA was isolated and quantified. Amelogenin locus and 16 human STRs were amplified, whereas the V4 region of 16 S rRNA gene was sequenced using Illumina MiSeq platform. STR profiles were successfully typed for 5 out of 22 "touch DNA" samples, while a microbiome profile was obtained for 20 out of 22 "touch microbiome" samples. Six skin core microbiome taxa were identified, as well as unique donor characterizing taxa. These unique taxa may have relevance for personal identification studies and may be useful to provide forensic intelligence information also when "touch DNA" fails. Additional future studies including greater datasets, additional time points and a greater number of surfaces may clarify the applicability of "touch microbiome" studies to real forensic contexts.


Assuntos
Bactérias/classificação , Bactérias/genética , Impressões Digitais de DNA/métodos , Microbiota , RNA Ribossômico 16S/análise , Pele/microbiologia , Tato , Adulto , Idoso , Amelogenina/genética , DNA/isolamento & purificação , Conjuntos de Dados como Assunto , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Projetos Piloto , Análise de Sequência de RNA
20.
Front Microbiol ; 11: 1686, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793158

RESUMO

Decomposition of animal bodies in the burial environment plays a key role in the biochemistry of the soil, altering the balance of the local microbial populations present before the introduction of the carcass. Despite the growing number of studies on decomposition and soil bacterial populations, less is known on its effects on fungal communities. Shifts in the fungal populations at different post-mortem intervals (PMIs) could provide insights for PMI estimation and clarify the role that specific fungal taxa have at specific decomposition stages. In this study, we buried pig carcasses over a period of 1- to 6-months, and we sampled the soil in contact with each carcass at different PMIs. We performed metabarcoding analysis of the mycobiome targeting both the internal transcribed spacer (ITS) 1 and 2, to elucidate which one was more suitable for this purpose. Our results showed a decrease in the fungal taxonomic richness associated with increasing PMIs, and the alteration of the soil fungal signature even after 6 months post-burial, showing the inability of soil communities to restore their original composition within this timeframe. The results highlighted taxonomic trends associated with specific PMIs, such as the increase of the Mortierellomycota after 4- and 6-months and of Ascomycota particularly after 2 months, and the decrease of Basidiomycota from the first to the last time point. We have found a limited number of taxa specifically associated with the carrion and not present in the control soil, showing that the major contributors to the recorded changes are originated from the soil and were not introduced by the carrion. As this is the first study conducted on burial graves, it sets the baseline for additional studies to investigate the role of fungal communities on prolonged decomposition periods and to identify fungal biomarkers to improve the accuracy of PMI prediction for forensic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA