Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
J Am Chem Soc ; 146(18): 12799-12807, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38662638

RESUMO

Alkyl cyclopropyl ketones are introduced as versatile substrates for catalytic formal [3 + 2] cycloadditions with alkenes and alkynes and previously unexplored enyne partners, efficiently delivering complex, sp3-rich products. The key to effectively engaging this relatively unreactive new substrate class is the use of SmI2 as a catalyst in combination with substoichiometric amounts of Sm0; the latter likely acting to prevent catalyst deactivation by returning SmIII to the catalytic cycle. In the absence of Sm0, background degradation of the SmI2 catalyst can outrun product formation. For the most recalcitrant alkyl cyclopropyl ketones, catalysis is "switched-on" using these new robust conditions, and otherwise unattainable products are delivered. Combined experimental and computational studies have been used to identify and probe reactivity trends among alkyl cyclopropyl ketones, including more complex bicyclic alkyl cyclopropyl ketones, which react quickly with various partners to give complex products. In addition to establishing alkyl cyclopropyl ketones as a new substrate class in a burgeoning field of catalysis, our study provides vital mechanistic insight and robust, practical approaches for the nascent field of catalysis with SmI2.

2.
Angew Chem Int Ed Engl ; 62(29): e202303104, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-36959098

RESUMO

The photoactivation of electron donor-acceptor complexes has emerged as a sustainable, selective and versatile strategy for the generation of radical species. Electron donor-acceptor (EDA) complexation, however, imposes electronic constraints on the donor and acceptor components and this can limit the range of radicals that can be generated using the approach. New EDA complexation strategies exploiting sulfonium salts allow radicals to be generated from native functionality. For example, aryl sulfonium salts, formed by the activation of arenes, can serve as the acceptor components in EDA complexes due to their electron-deficient nature. This "sulfonium tag" approach relaxes the electronic constraints on the parent substrate and dramatically expands the range of radicals that can be generated using EDA complexation. In this review, these new applications of sulfonium salts will be introduced and the areas of chemical space rendered accessible through this innovation will be highlighted.

3.
Angew Chem Int Ed Engl ; 62(29): e202302418, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37000422

RESUMO

Benzothiophenes, activated by oxidation to the corresponding S-oxides, undergo C-H/C-H-type coupling with phenols to give C4 arylation products. While an electron-withdrawing group at C3 of the benzothiophene is important, the process operates without a directing group and a metal catalyst, thus rendering it compatible with sensitive functionalities-e.g. halides and formyl groups. Quantum chemical calculations suggest a formal stepwise mechanism involving heterolytic cleavage of an aryloxysulfur species to give a π-complex of the corresponding benzothiophene and a phenoxonium cation. Subsequent addition of the phenoxonium cation to the C4 position of the benzothiophene is favored over the addition to C3; Fukui functions predict that the major regioisomer is formed at the more electron-rich position between C3 and C4. Varied selective manipulation of the benzothiophene products showcase the synthetic utility of the metal-free arylation process.

4.
J Am Chem Soc ; 144(16): 7457-7464, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35417150

RESUMO

The therapeutic properties of Curcuma (ginger and turmeric's family) have long been known in traditional medicine. However, only recently have guaiane-type sesquiterpenes extracted from Curcuma phaeocaulis been submitted to biological testing, and their enhanced bioactivity was highlighted. Among these compounds, phaeocaulisin A has shown remarkable anti-inflammatory and anticancer activity, which appears to be tied to the unique bridged acetal moiety embedded in its tetracyclic framework. Prompted by the promising biological profile of phaeocaulisin A and by the absence of a synthetic route for its provision, we have implemented the first enantioselective total synthesis of phaeocaulisin A in 17 steps with 2% overall yield. Our route design builds on the identification of an enantioenriched lactone intermediate, tailored with both a ketone moiety and a conjugated alkene system. Taking advantage of the umpolung carbonyl-olefin coupling reactivity enabled by the archetypal single-electron transfer (SET) reductant samarium diiodide (SmI2), the lactone intermediate was submitted to two sequential SmI2-mediated cyclizations to stereoselectively construct the polycyclic core of the natural product. Crucially, by exploiting the innate inner-sphere nature of carbonyl reduction using SmI2, we have used a steric blocking strategy to render sites SET-unreceptive and thus achieve chemoselective reduction in a complex substrate. Our asymmetric route enabled elucidation of the naturally occurring isomer of phaeocaulisin A and provides a synthetic platform to access other guaiane-type sesquiterpenes from C. phaeocaulis─as well as their synthetic derivatives─for medicinal chemistry and drug design.


Assuntos
Alcenos , Sesquiterpenos de Guaiano , Alcenos/química , Ciclização , Transporte de Elétrons , Lactonas , Sesquiterpenos de Guaiano/química
5.
J Am Chem Soc ; 144(30): 13946-13952, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35858251

RESUMO

Reductive cyclizations of carbonyl compounds, mediated by samarium(II) diiodide (SmI2, Kagan's reagent), represent an invaluable platform to generate molecular complexity in a stereocontrolled manner. In addition to classical ketone and aldehyde substrates, recent advances in radical chemistry allow the cyclization of lactone and lactam-type substrates using SmI2. In contrast, acyclic esters are considered to be unreactive to SmI2 and their participation in reductive cyclizations is unprecedented. Here, we report a diastereoselective radical 1,4-ester migration process, mediated by SmI2, that delivers stereodefined alkene hydrocarboxylation products via radical cyclization of acyclic ester groups in α-carbomethoxy δ-lactones. Isotopic labeling experiments and computational studies have been used to probe the mechanism of the migration. We propose that a switch in conformation redirects single electron transfer from SmI2 to the acyclic ester group, rather than the "more reactive" lactone carbonyl. Our study paves the way for the use of elusive ketyl radicals, derived from acyclic esters, in SmI2-mediated reductive cyclizations.


Assuntos
Ésteres , Samário , Ciclização , Ésteres/química , Iodetos/química , Lactonas/química , Samário/química
6.
Chem Soc Rev ; 50(9): 5349-5365, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33972956

RESUMO

Ketyl radicals are valuable reactive intermediates for synthesis and are used extensively to construct complex, functionalized products from carbonyl substrates. Single electron transfer (SET) reduction of the C[double bond, length as m-dash]O bond of aldehydes and ketones is the classical approach for the formation of ketyl radicals and metal reductants are the archetypal reagents employed. The past decade has, however, witnessed significant advances in the generation and harnessing of ketyl radicals. This tutorial review highlights recent, exciting developments in the chemistry of ketyl radicals by comparing the varied contemporary - for example, using photoredox catalysts - and more classical approaches for the generation and use of ketyl radicals. The review will focus on different strategies for ketyl radical generation, their creative use in new synthetic protocols, strategies for the control of enantioselectivity, and detailed mechanisms where appropriate.

7.
Angew Chem Int Ed Engl ; 61(50): e202212158, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250805

RESUMO

Access to new non-canonical amino acid residues is crucial for medicinal chemistry and chemical biology. Analogues of the amino acid methionine have been far less explored-despite their use in biochemistry, pharmacology and peptide bioconjugation. This is largely due to limited synthetic access. Herein, we exploit a new disconnection to access non-natural methionines through the development of a photochemical method for the radical α-C-H functionalization of sulfides with alkenes, in water, using inexpensive and commercially-available riboflavin (vitamin B2 ) as a photocatalyst. Our photochemical conditions allow the two-step synthesis of novel methionine analogues-by radical addition to unsaturated amino acid derivatives-and the chemoselective modification of peptide side-chains to yield non-natural methionine residues within small peptides. The mechanism of the bio-inspired flavin photocatalysis has been probed by experimental, DFT and TDDFT studies.


Assuntos
Metionina , Riboflavina , Aminoácidos , Metionina/química , Peptídeos/química , Racemetionina , Vitaminas , Catálise
8.
J Am Chem Soc ; 143(9): 3655-3661, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33629852

RESUMO

The archetypal single electron transfer reductant, samarium(II) diiodide (SmI2, Kagan's reagent), remains one of the most important reducing agents and mediators of radical chemistry after four decades of widespread use in synthesis. While the chemistry of SmI2 is very often unique, and thus the reagent is indispensable, it is almost invariably used in superstoichiometric amounts, thus raising issues of cost and waste. Of the few reports of the use of catalytic SmI2, all require the use of superstoichiometric amounts of a metal coreductant to regenerate Sm(II). Here, we describe a SmI2-catalyzed intermolecular radical coupling of aryl cyclopropyl ketones and alkynes. The process shows broad substrate scope and delivers a library of decorated cyclopentenes with loadings of SmI2 as low as 15 mol %. The radical relay strategy negates the need for a superstoichiometric coreductant and additives to regenerate SmI2. Crucially, our study uncovers an intriguing link between ketone conformation and efficient cross-coupling and thus provides an insight into the mechanism of radical relays involving SmI2. The study lays further groundwork for the future use of the classical reagent SmI2 in contemporary radical catalysis.

9.
Angew Chem Int Ed Engl ; 60(2): 666-669, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-32965750

RESUMO

2D NMR is an immensely powerful structural tool but it is time-consuming. Targeting individual chemical groups by selective excitation in a 1D experiment can give the information required far more quickly. A major problem, however, is that proton NMR spectra are often extensively overlapped, so that in practice only a minority of sites can be selectively excited. Here we overcome that problem using a fast, single-scan method that allows selective excitation of the signals of a single proton multiplet even where it is severely overlapped by other multiplets. The advantages of the method are illustrated in a selective 1D NOESY experiment, the most efficient way to determine relative configuration unambiguously by NMR. The new approach presented here has the potential to broaden significantly the applicability of selective excitation and unlock its real potential for many other experiments.

10.
Angew Chem Int Ed Engl ; 60(26): 14355-14359, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33847459

RESUMO

Quinazolinones are common substructures in molecules of medicinal importance. We report an enantioselective copper-catalyzed borylative cyclization for the assembly of privileged pyrroloquinazolinone motifs. The reaction proceeds with high enantio- and diastereocontrol, and can deliver products containing quaternary stereocenters. The utility of the products is demonstrated through further manipulations.

11.
Chem Soc Rev ; 48(17): 4626-4638, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31298671

RESUMO

Radical cascade reactions are an attractive tool for the rapid construction of complex molecular architectures. Although a large number of powerful radical cascades have been developed, stoichiometric amounts of reagents and/or additives are often required to mediate these processes. Radical relay strategies, in which radical character is recycled, require only a catalytic amount of reagent and are particularly attractive as they promise cascades that are high in atom economy. This tutorial review highlights recent advances in this rapidly developing area by setting out and dissecting the reaction designs underpinning state-of-the-art processes involving radical relays. Advances in the field of radical relay cascades will open the door to more efficient synthesis with far-reaching benefits for the makers and end-users of complex molecules.

12.
Chimia (Aarau) ; 74(1): 18-22, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32200782

RESUMO

This review focuses on recent developments from our laboratory in the field of radical reactions mediated by the archetypal reductive single electron transfer (SET) reagent, SmI2. Namely, we have expanded the scope of reducible carbonyl moieties to esters and amides and have exploited the resultant ketyl radicals in radical cascade reactions that generate unprecedented scaffolds. Moreover, we have taken the first steps to address the long-standing challenges of catalysis and chiral ligand control associated with the reagent.

13.
Angew Chem Int Ed Engl ; 59(12): 4879-4882, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31917893

RESUMO

An efficient, enantio- and diastereoselective, copper-catalyzed coupling of imines, 1,3-enynes, and diborons is reported. The process shows broad substrate scope and delivers complex, chiral homopropargyl amines; useful building blocks on the way to biologically-relevant compounds. In particular, functionalized homopropargyl amines bearing up to three contiguous stereocenters can be prepared in a single step.

14.
Angew Chem Int Ed Engl ; 59(37): 15918-15922, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463942

RESUMO

Trifluoromethyl sulfoxides are a new class of trifluoromethylthiolating reagent. The sulfoxides engage in metal-free C-H trifluoromethylthiolation with a range of (hetero)arenes. The method is also applicable to the functionalization of important compound classes, such as ligand derivatives and polyaromatics, and in the late-stage trifluoromethylthiolation of medicines and agrochemicals. The isolation and characterization of a sulfonium salt intermediate supports an interrupted Pummerer reaction mechanism.

15.
Angew Chem Int Ed Engl ; 59(46): 20278-20289, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32544295

RESUMO

Copper-catalyzed borylative multicomponent reactions (MCRs) involving olefins and C-N electrophiles are a powerful tool to rapidly build up molecular complexity. The products from these reactions contain multiple functionalities, such as amino, cyano and boronate groups, that are ubiquitous in medicinal and process chemistry programs. Copper-catalyzed MCRs are particularly attractive because they use a relatively abundant and non-toxic catalyst to selectively deliver high-value products from simple feedstocks such as olefins. In this Minireview, we explore this rapidly emerging field and survey the borylative union of allenes, dienes, styrenes and other olefins, with imines, nitriles and related C-N electrophiles.

16.
Angew Chem Int Ed Engl ; 58(23): 7813-7817, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30958633

RESUMO

A benzothiophene S-oxide catalyst, generated in situ by sulfur oxidation with H2 O2 , mediates the oxidative coupling of 2-naphthols. Key to the catalytic process is the capture and inversion of reactivity of a 2-naphthol partner, using an interrupted Pummerer reaction of an unusual benzothiophene S-oxide, followed by subsequent coupling with a second partner. The new catalytic manifold has been showcased in the synthesis of the bioactive natural products, (±)-nigerone and (±)-isonigerone. Although Pummerer reactions are used widely, their application in catalysis is rare, and our approach represents a new catalytic manifold for metal-free C-C bond formation.

17.
Angew Chem Int Ed Engl ; 58(26): 8779-8783, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-30964596

RESUMO

A transition metal-free one-pot stereoselective approach to substituted (E,Z)-1,3-dienes was developed by using an interrupted Pummerer reaction/ligand-coupling strategy. Readily available benzothiophene S-oxides, which can be conveniently prepared by oxidation of the parent benzothiophenes, undergo Pummerer coupling with styrenes. Reaction of the resultant sulfonium salts with alkyllithium/magnesium reagents generates underexploited hypervalent sulfurane intermediates that undergo selective ligand coupling, resulting in dismantling of the benzothiophene motif and the formation of decorated (E,Z)-1,3-dienes.

18.
Angew Chem Int Ed Engl ; 58(44): 15675-15679, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31479175

RESUMO

Due to their ubiquity in nature and frequent use in organic electronic materials, benzothiophenes are highly sought after. Here we set out an unprecedented procedure for the formation of benzothiophenes by the twofold vicinal C-H functionalization of arenes that does not require metal catalysis. This one-pot annulation proceeds through an interrupted Pummerer reaction/[3,3]-sigmatropic rearrangement/cyclization sequence to deliver various benzothiophene products. The procedure is particularly effective for the rapid synthesis of benzothiophenes from non-prefunctionalized polyaromatic hydrocarbons (PAHs).

19.
Angew Chem Int Ed Engl ; 57(18): 4995-4999, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29493858

RESUMO

Radical anions generated from urea carbonyls by reductive electron transfer are exploited in carbon-carbon bond formation. New radical cyclizations of urea radical anions deliver complex nitrogen heterocycles and, depending upon the proton source used in the reactions, a chemoselective switch between reaction pathways can deliver two heterobicyclic scaffolds. A computational study has been used to investigate the selectivity of the urea radical processes. Furthermore, radical cyclization cascades involving urea radical anions deliver unusual spirocyclic aminal architectures.

20.
Angew Chem Int Ed Engl ; 57(35): 11305-11309, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-29992705

RESUMO

Copper catalyzed multi-functionalization of unsaturated carbon-carbon bonds is a powerful tool for the generation of complex molecules. We report a regiodivergent process that allows a switch between 1,4-borocupration and 4,1-borocupration of 1,3-dienes upon a simple change in ligand. The subsequently generated allyl coppers are trapped in an electrophilic cyanation to selectively generate densely functionalized and synthetically versatile 1,2- or 4,3-borocyanation products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA