Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 134(5): 482-501, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38323474

RESUMO

BACKGROUND: Mitochondrial dysfunction is a primary driver of cardiac contractile failure; yet, the cross talk between mitochondrial energetics and signaling regulation remains obscure. Ponatinib, a tyrosine kinase inhibitor used to treat chronic myeloid leukemia, is among the most cardiotoxic tyrosine kinase inhibitors and causes mitochondrial dysfunction. Whether ponatinib-induced mitochondrial dysfunction triggers the integrated stress response (ISR) to induce ponatinib-induced cardiotoxicity remains to be determined. METHODS: Using human induced pluripotent stem cells-derived cardiomyocytes and a recently developed mouse model of ponatinib-induced cardiotoxicity, we performed proteomic analysis, molecular and biochemical assays to investigate the relationship between ponatinib-induced mitochondrial stress and ISR and their role in promoting ponatinib-induced cardiotoxicity. RESULTS: Proteomic analysis revealed that ponatinib activated the ISR in cardiac cells. We identified GCN2 (general control nonderepressible 2) as the eIF2α (eukaryotic translation initiation factor 2α) kinase responsible for relaying mitochondrial stress signals to trigger the primary ISR effector-ATF4 (activating transcription factor 4), upon ponatinib exposure. Mechanistically, ponatinib treatment exerted inhibitory effects on ATP synthase activity and reduced its expression levels resulting in ATP deficits. Perturbed mitochondrial function resulting in ATP deficits then acts as a trigger of GCN2-mediated ISR activation, effects that were negated by nicotinamide mononucleotide, an NAD+ precursor, supplementation. Genetic inhibition of ATP synthase also activated GCN2. Interestingly, we showed that the decreased abundance of ATP also facilitated direct binding of ponatinib to GCN2, unexpectedly causing its activation most likely because of a conformational change in its structure. Importantly, administering an ISR inhibitor protected human induced pluripotent stem cell-derived cardiomyocytes against ponatinib. Ponatinib-treated mice also exhibited reduced cardiac function, effects that were attenuated upon systemic ISRIB administration. Importantly, ISRIB does not affect the antitumor effects of ponatinib in vitro. CONCLUSIONS: Neutralizing ISR hyperactivation could prevent or reverse ponatinib-induced cardiotoxicity. The findings that compromised ATP production potentiates GCN2-mediated ISR activation have broad implications across various cardiac diseases. Our results also highlight an unanticipated role of ponatinib in causing direct activation of a kinase target despite its role as an ATP-competitive kinase inhibitor.


Assuntos
Imidazóis , Células-Tronco Pluripotentes Induzidas , Doenças Mitocondriais , Piridazinas , Humanos , Animais , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Cardiotoxicidade/patologia , Proteômica , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/toxicidade , Doenças Mitocondriais/patologia , Trifosfato de Adenosina
2.
Annu Rev Physiol ; 84: 257-283, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34614374

RESUMO

Microtubules are essential cytoskeletal elements found in all eukaryotic cells. The structure and composition of microtubules regulate their function, and the dynamic remodeling of the network by posttranslational modifications and microtubule-associated proteins generates diverse populations of microtubules adapted for various contexts. In the cardiomyocyte, the microtubules must accommodate the unique challenges faced by a highly contractile, rigidly structured, and long-lasting cell. Through their canonical trafficking role and positioning of mRNA, proteins, and organelles, microtubules regulate essential cardiomyocyte functions such as electrical activity, calcium handling, protein translation, and growth. In a more specialized role, posttranslationally modified microtubules form load-bearing structures that regulate myocyte mechanics and mechanotransduction. Modified microtubules proliferate in cardiovascular diseases, creating stabilized resistive elements that impede cardiomyocyte contractility and contribute to contractile dysfunction. In this review, we highlight the most exciting new concepts emerging from recent studies into canonical and noncanonical roles of cardiomyocyte microtubules.


Assuntos
Mecanotransdução Celular , Miócitos Cardíacos , Citoesqueleto/metabolismo , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional
3.
Brain ; 146(12): 5182-5197, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015929

RESUMO

STXBP1-related disorders are among the most common genetic epilepsies and neurodevelopmental disorders. However, the longitudinal epilepsy course and developmental end points, have not yet been described in detail, which is a critical prerequisite for clinical trial readiness. Here, we assessed 1281 cumulative patient-years of seizure and developmental histories in 162 individuals with STXBP1-related disorders and established a natural history framework. STXBP1-related disorders are characterized by a dynamic pattern of seizures in the first year of life and high variability in neurodevelopmental trajectories in early childhood. Epilepsy onset differed across seizure types, with 90% cumulative onset for infantile spasms by 6 months and focal-onset seizures by 27 months of life. Epilepsy histories diverged between variant subgroups in the first 2 years of life, when individuals with protein-truncating variants and deletions in STXBP1 (n = 39) were more likely to have infantile spasms between 5 and 6 months followed by seizure remission, while individuals with missense variants (n = 30) had an increased risk for focal seizures and ongoing seizures after the first year. Developmental outcomes were mapped using milestone acquisition data in addition to standardized assessments including the Gross Motor Function Measure-66 Item Set and the Grasping and Visual-Motor Integration subsets of the Peabody Developmental Motor Scales. Quantification of end points revealed high variability during the first 5 years of life, with emerging stratification between clinical subgroups. An earlier epilepsy onset was associated with lower developmental abilities, most prominently when assessing gross motor development and expressive communication. We found that individuals with neonatal seizures or early infantile seizures followed by seizure offset by 12 months of life had more predictable seizure trajectories in early to late childhood compared to individuals with more severe seizure presentations, including individuals with refractory epilepsy throughout the first year. Characterization of anti-seizure medication response revealed age-dependent response over time, with phenobarbital, levetiracetam, topiramate and adrenocorticotropic hormone effective in reducing seizures in the first year of life, while clobazam and the ketogenic diet were effective in long-term seizure management. Virtual clinical trials using seizure frequency as the primary outcome resulted in wide range of trial success probabilities across the age span, with the highest probability in early childhood between 1 year and 3.5 years. In summary, we delineated epilepsy and developmental trajectories in STXBP1-related disorders using standardized measures, providing a foundation to interpret future therapeutic strategies and inform rational trial design.


Assuntos
Epilepsia , Espasmos Infantis , Recém-Nascido , Criança , Pré-Escolar , Humanos , Lactente , Anticonvulsivantes/uso terapêutico , Espasmos Infantis/genética , Espasmos Infantis/tratamento farmacológico , Topiramato/uso terapêutico , Convulsões/induzido quimicamente , Proteínas Munc18/genética
4.
Eur Heart J ; 44(17): 1560-1570, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37122097

RESUMO

BACKGROUND: Amyloid plaques and neurofibrillary tangles, the molecular lesions that characterize Alzheimer's disease (AD) and other forms of dementia, are emerging as determinants of proteinopathies 'beyond the brain'. This study aims to establish tau's putative pathophysiological mechanistic roles and potential future therapeutic targeting of tau in heart failure (HF). METHODS AND RESULTS: A mouse model of tauopathy and human myocardial and brain tissue from patients with HF, AD, and controls was employed in this study. Tau protein expression was examined together with its distribution, and in vitro tau-related pathophysiological mechanisms were identified using a variety of biochemical, imaging, and functional approaches. A novel tau-targeting immunotherapy was tested to explore tau-targeted therapeutic potential in HF. Tau is expressed in normal and diseased human hearts, in contradistinction to the current oft-cited observation that tau is expressed specifically in the brain. Notably, the main cardiac isoform is high-molecular-weight (HMW) tau (also known as big tau), and hyperphosphorylated tau segregates in aggregates in HF and AD hearts. As previously described for amyloid-beta, the tauopathy phenotype in human myocardium is of diastolic dysfunction. Perturbation in the tubulin code, specifically a loss of tyrosinated microtubules, emerged as a potential mechanism of myocardial tauopathy. Monoclonal anti-tau antibody therapy improved myocardial function and clearance of toxic aggregates in mice, supporting tau as a potential target for novel HF immunotherapy. CONCLUSION: The study presents new mechanistic evidence and potential treatment for the brain-heart tauopathy axis in myocardial and brain degenerative diseases and ageing.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Camundongos , Animais , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Tauopatias/metabolismo , Tauopatias/patologia , Microtúbulos/metabolismo , Microtúbulos/patologia , Miocárdio/patologia
5.
Am J Physiol Heart Circ Physiol ; 325(4): H814-H821, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566108

RESUMO

Osteogenesis imperfecta (OI) is an extracellular matrix disorder characterized by defects in collagen-1 transport or synthesis, resulting in bone abnormalities. Although reduced collagen in OI hearts has been associated with reduced myocardial stiffness and left ventricular remodeling, its impact on cardiomyocyte (CM) function has not been studied. Here, we explore the tissue-level and CM-level properties of a heart from a deceased organ donor with OI type I. Proteomics and histology confirmed strikingly low expression of collagen 1. Trabecular stretch confirmed low stiffness on the tissue level. However, CMs retained normal viscoelastic properties as revealed by nanoindentation. Interestingly, OI CMs were hypercontractile relative to nonfailing controls after 24 h of culture. In response to 48 h of culture on surfaces with physiological (10 kPa) and pathological (50 kPa) stiffness, OI CMs demonstrated a greater reduction in contractility than nonfailing CMs, suggesting that OI CMs may have an impaired stress response. Levels of detyrosinated α-tubulin, known to be responsive to extracellular stiffness, were reduced in OI CMs. Together these data confirm multiple CM-level adaptations to low stiffness that extend our understanding of OI in the heart and how CMs respond to extracellular stiffness.NEW & NOTEWORTHY In a rare donation of a heart from an individual with osteogenesis imperfecta (OI), we explored cardiomyocyte (CM) adaptations to low stiffness. This represents the first assessment of cardiomyocyte mechanics in OI. The data reveal the hypercontractility of OI CMs with rapid rundown when exposed to acute stiffness challenges, extending our understanding of OI. These data demonstrate that the impact of OI on myocardial mechanics includes cardiomyocyte adaptations beyond known direct effects on the extracellular matrix.


Assuntos
Osteogênese Imperfeita , Humanos , Adulto , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Miócitos Cardíacos/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Osteogênese
6.
Basic Res Cardiol ; 117(1): 41, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36006489

RESUMO

The mechanical environment of the myocardium has a potent effect on cardiomyocyte form and function, yet an understanding of the cardiomyocyte responses to extracellular stiffening remains incomplete. We therefore employed a cell culture substrate with tunable stiffness to define the cardiomyocyte responses to clinically relevant stiffness increments in the absence of cell-cell interactions. When cultured on substrates magnetically actuated to mimic the stiffness of diseased myocardium, isolated rat adult cardiomyocytes exhibited a time-dependent reduction of sarcomere shortening, characterized by slowed contraction and relaxation velocity, and alterations of the calcium transient. Cardiomyocytes cultured on stiff substrates developed increases in viscoelasticity and microtubule detyrosination in association with early increases in the α-tubulin detyrosinating enzyme vasohibin-2 (Vash2). We found that knockdown of Vash2 was sufficient to preserve contractile performance as well as calcium transient properties in the presence of extracellular substrate stiffening. Orthogonal prevention of detyrosination by overexpression of tubulin tyrosine ligase (TTL) was also able to preserve contractility and calcium homeostasis. These data demonstrate that a pathologic increment of extracellular stiffness induces early, cell-autonomous remodeling of adult cardiomyocytes that is dependent on detyrosination of α-tubulin.


Assuntos
Microtúbulos , Miócitos Cardíacos , Animais , Cálcio , Microtúbulos/patologia , Microtúbulos/fisiologia , Miocárdio , Miócitos Cardíacos/patologia , Miócitos Cardíacos/fisiologia , Ratos , Tubulina (Proteína)/química
7.
Basic Res Cardiol ; 117(1): 53, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36326891

RESUMO

In heart failure, an increased abundance of post-translationally detyrosinated microtubules stiffens the cardiomyocyte and impedes its contractile function. Detyrosination promotes interactions between microtubules, desmin intermediate filaments, and the sarcomere to increase cytoskeletal stiffness, yet the mechanism by which this occurs is unknown. We hypothesized that detyrosination may regulate the growth and shrinkage of dynamic microtubules to facilitate interactions with desmin and the sarcomere. Through a combination of biochemical assays and direct observation of growing microtubule plus-ends in adult cardiomyocytes, we find that desmin is required to stabilize growing microtubules at the level of the sarcomere Z-disk, where desmin also rescues shrinking microtubules from continued depolymerization. Further, reducing detyrosination (i.e. tyrosination) below basal levels promotes frequent depolymerization and less efficient growth of microtubules. This is concomitant with tyrosination promoting the interaction of microtubules with the depolymerizing protein complex of end-binding protein 1 (EB1) and CAP-Gly domain-containing linker protein 1 (CLIP1/CLIP170). The dynamic growth and shrinkage of tyrosinated microtubules reduce their opportunity for stabilizing interactions at the Z-disk region, coincident with tyrosination globally reducing microtubule stability. These data provide a model for how intermediate filaments and tubulin detyrosination establish long-lived and physically reinforced microtubules that stiffen the cardiomyocyte and inform both the mechanism of action and therapeutic index for strategies aimed at restoring tyrosination for the treatment of cardiac disease.


Assuntos
Miócitos Cardíacos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Miócitos Cardíacos/metabolismo , Desmina/metabolismo , Filamentos Intermediários/metabolismo , Tirosina/metabolismo , Microtúbulos/metabolismo
8.
Circ Res ; 126(3): e10-e26, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31822208

RESUMO

Rationale: Mechanical forces are transduced to nuclear responses via the linkers of the nucleoskeleton and cytoskeleton (LINC) complex, which couples the cytoskeleton to the nuclear lamina and associated chromatin. While disruption of the LINC complex can cause cardiomyopathy, the relevant interactions that bridge the nucleoskeleton to cytoskeleton are poorly understood in the cardiomyocyte, where cytoskeletal organization is unique. Furthermore, while microtubules and desmin intermediate filaments associate closely with cardiomyocyte nuclei, the importance of these interactions is unknown. Objective: Here, we sought to determine how cytoskeletal interactions with the LINC complex regulate nuclear homeostasis in the cardiomyocyte. Methods and Results: To this end, we acutely disrupted the LINC complex, microtubules, actin, and intermediate filaments and assessed the consequences on nuclear morphology and genome organization in rat ventricular cardiomyocytes via a combination of super-resolution imaging, biophysical, and genomic approaches. We find that a balance of dynamic microtubules and desmin intermediate filaments is required to maintain nuclear shape and the fidelity of the nuclear envelope and lamina. Upon depletion of desmin (or nesprin [nuclear envelope spectrin repeat protein]-3, its binding partner in the LINC complex), polymerizing microtubules collapse the nucleus and drive infolding of the nuclear membrane. This results in DNA damage, a loss of genome organization, and broad transcriptional changes. The collapse in nuclear integrity is concomitant with compromised contractile function and may contribute to the pathophysiological changes observed in desmin-related myopathies. Conclusions: Disrupting the tethering of desmin to the nucleus results in a loss of nuclear homeostasis and rapid alterations to cardiomyocyte function. Our data suggest that a balance of forces imposed by intermediate filaments and microtubules is required to maintain nuclear structure and genome organization in the cardiomyocyte.


Assuntos
Citoesqueleto de Actina/metabolismo , Microtúbulos/metabolismo , Miócitos Cardíacos/metabolismo , Matriz Nuclear/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Células Cultivadas , Desmina/genética , Desmina/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microtúbulos/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Matriz Nuclear/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Circ Res ; 127(2): e14-e27, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32272864

RESUMO

RATIONALE: Impaired myocardial relaxation is an intractable feature of several heart failure (HF) causes. In human HF, detyrosinated microtubules stiffen cardiomyocytes and impair relaxation. Yet the identity of detyrosinating enzymes have remained ambiguous, hindering mechanistic study and therapeutic development. OBJECTIVE: We aimed to determine if the recently identified complex of VASH1/2 (vasohibin 1/2) and SVBP (small vasohibin binding protein) is an active detyrosinase in cardiomyocytes and if genetic inhibition of VASH-SVBP is sufficient to lower stiffness and improve contractility in HF. METHODS AND RESULTS: Transcriptional profiling revealed that VASH1 transcript is >10-fold more abundant than VASH2 in human hearts. Using short hairpin RNAs (shRNAs) against VASH1, VASH2, and SVBP, we showed that both VASH1- and VASH2-SVBP complexes function as tubulin carboxypeptidases in cardiomyocytes, with a predominant role for VASH1. We also generated a catalytically dead version of the tyrosinating enzyme TTL (TTL-E331Q) to separate the microtubule depolymerizing effects of TTL from its enzymatic activity. Assays of microtubule stability revealed that both TTL and TTL-E331Q depolymerize microtubules, while VASH1 and SVBP depletion reduce detyrosination independent of depolymerization. We next probed effects on human cardiomyocyte contractility. Contractile kinetics were slowed in HF, with dramatically slowed relaxation in cardiomyocytes from patients with HF with preserved ejection fraction. Knockdown of VASH1 conferred subtle kinetic improvements in nonfailing cardiomyocytes, while markedly improving kinetics in failing cardiomyocytes. Further, TTL, but not TTL-E331Q, robustly sped relaxation. Simultaneous measurements of calcium transients and contractility demonstrated that VASH1 depletion speeds kinetics independent from alterations to calcium cycling. Finally, atomic force microscopy confirmed that VASH1 depletion reduces the stiffness of failing human cardiomyocytes. CONCLUSIONS: VASH-SVBP complexes are active tubulin carboxypeptidases in cardiomyocytes. Inhibition of VASH1 or activation of TTL is sufficient to lower stiffness and speed relaxation in cardiomyocytes from patients with HF, supporting further pursuit of detyrosination as a therapeutic target for diastolic dysfunction.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Insuficiência Cardíaca/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Células HEK293 , Insuficiência Cardíaca/fisiopatologia , Humanos , Mutação , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley
10.
Circulation ; 141(11): 902-915, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-31941365

RESUMO

BACKGROUND: Diastolic dysfunction is a prevalent and therapeutically intractable feature of heart failure (HF). Increasing ventricular compliance can improve diastolic performance, but the viscoelastic forces that resist diastolic filling and become elevated in human HF are poorly defined. Having recently identified posttranslationally detyrosinated microtubules as a source of viscoelasticity in cardiomyocytes, we sought to test whether microtubules contribute meaningful viscoelastic resistance to diastolic stretch in human myocardium. METHODS: Experiments were conducted in isolated human cardiomyocytes and trabeculae. First, slow and rapid (diastolic) stretch was applied to intact cardiomyocytes from nonfailing and HF hearts and viscoelasticity was characterized after interventions targeting microtubules. Next, intact left ventricular trabeculae from HF patient hearts were incubated with colchicine or vehicle and subject to pre- and posttreatment mechanical testing, which consisted of a staircase protocol and rapid stretches from slack length to increasing strains. RESULTS: Viscoelasticity was increased during diastolic stretch of HF cardiomyocytes compared with nonfailing counterparts. Reducing either microtubule density or detyrosination reduced myocyte stiffness, particularly at diastolic strain rates, indicating reduced viscous forces. In myocardial tissue, we found microtubule depolymerization reduced myocardial viscoelasticity, with an effect that decreased with increasing strain. Colchicine reduced viscoelasticity at strains below, but not above, 15%, with a 2-fold reduction in energy dissipation upon microtubule depolymerization. Post hoc subgroup analysis revealed that myocardium from patients with HF with reduced ejection fraction were more fibrotic and elastic than myocardium from patients with HF with preserved ejection fraction, which were relatively more viscous. Colchicine reduced viscoelasticity in both HF with preserved ejection fraction and HF with reduced ejection fraction myocardium. CONCLUSIONS: Failing cardiomyocytes exhibit elevated viscosity and reducing microtubule density or detyrosination lowers viscoelastic resistance to diastolic stretch in human myocytes and myocardium. In failing myocardium, microtubules elevate stiffness over the typical working range of strains and strain rates, but exhibited diminishing effects with increasing length, consistent with an increasing contribution of the extracellular matrix or myofilament proteins at larger excursions. These studies indicate that a stabilized microtubule network provides a viscous impediment to diastolic stretch, particularly in HF.


Assuntos
Insuficiência Cardíaca/patologia , Microtúbulos/fisiologia , Miocárdio/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Adulto , Idoso , Colchicina/farmacologia , Diástole , Elasticidade , Feminino , Humanos , Masculino , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Pessoa de Meia-Idade , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Sesquiterpenos/farmacologia , Estresse Mecânico , Volume Sistólico , Tirosina/metabolismo , Disfunção Ventricular Esquerda/patologia , Viscosidade
11.
Proc Natl Acad Sci U S A ; 113(32): 8939-44, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457951

RESUMO

In the beating heart, cardiac myocytes (CMs) contract in a coordinated fashion, generating contractile wave fronts that propagate through the heart with each beat. Coordinating this wave front requires fast and robust signaling mechanisms between CMs. The primary signaling mechanism has long been identified as electrical: gap junctions conduct ions between CMs, triggering membrane depolarization, intracellular calcium release, and actomyosin contraction. In contrast, we propose here that, in the early embryonic heart tube, the signaling mechanism coordinating beats is mechanical rather than electrical. We present a simple biophysical model in which CMs are mechanically excitable inclusions embedded within the extracellular matrix (ECM), modeled as an elastic-fluid biphasic material. Our model predicts strong stiffness dependence in both the heartbeat velocity and strain in isolated hearts, as well as the strain for a hydrogel-cultured CM, in quantitative agreement with recent experiments. We challenge our model with experiments disrupting electrical conduction by perfusing intact adult and embryonic hearts with a gap junction blocker, ß-glycyrrhetinic acid (BGA). We find this treatment causes rapid failure in adult hearts but not embryonic hearts-consistent with our hypothesis. Last, our model predicts a minimum matrix stiffness necessary to propagate a mechanically coordinated wave front. The predicted value is in accord with our stiffness measurements at the onset of beating, suggesting that mechanical signaling may initiate the very first heartbeats.


Assuntos
Frequência Cardíaca , Coração/embriologia , Animais , Embrião de Galinha , Junções Comunicantes/fisiologia , Modelos Biológicos , Contração Miocárdica , Miócitos Cardíacos/fisiologia
12.
Biophys J ; 115(9): 1796-1807, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30322798

RESUMO

BACKGROUND: Microtubules (MTs) buckle and bear load during myocyte contraction, a behavior enhanced by post-translational detyrosination. This buckling suggests a spring-like resistance against myocyte shortening, which could store energy and aid myocyte relaxation. Despite this visual suggestion of elastic behavior, the precise mechanical contribution of the cardiac MT network remains to be defined. METHODS: Here we experimentally and computationally probe the mechanical contribution of stable MTs and their influence on myocyte function. We use multiple approaches to interrogate viscoelasticity and cell shortening in primary murine myocytes in which either MTs are depolymerized or detyrosination is suppressed and use the results to inform a mathematical model of myocyte viscoelasticity. RESULTS: MT ablation by colchicine concurrently enhances both the degree of shortening and speed of relaxation, a finding inconsistent with simple spring-like MT behavior and suggestive of a viscoelastic mechanism. Axial stretch and transverse indentation confirm that MTs increase myocyte viscoelasticity. Specifically, increasing the rate of strain amplifies the MT contribution to myocyte stiffness. Suppressing MT detyrosination with parthenolide or via overexpression of tubulin tyrosine ligase has mechanical consequences that closely resemble colchicine, suggesting that the mechanical impact of MTs relies on a detyrosination-dependent linkage with the myocyte cytoskeleton. Mathematical modeling affirms that alterations in cell shortening conferred by either MT destabilization or tyrosination can be attributed to internal changes in myocyte viscoelasticity. CONCLUSIONS: The results suggest that the cardiac MT network regulates contractile amplitudes and kinetics by acting as a cytoskeletal shock-absorber, whereby MTs provide breakable cross-links between the sarcomeric and nonsarcomeric cytoskeleton that resist rapid length changes during both shortening and stretch.


Assuntos
Movimento Celular , Elasticidade , Microtúbulos/metabolismo , Células Musculares/citologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Ratos , Viscosidade
14.
J Physiol ; 595(12): 3931-3937, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28116814

RESUMO

The mechanical role of cardiac microtubules (MTs) has been a topic of some controversy. Early studies, which relied largely on pharmacological interventions that altered the MT cytoskeleton as a whole, presented no consistent role. Recent advances in the ability to observe and manipulate specific properties of the cytoskeleton have strengthened our understanding. Direct observation of MTs in working myocytes suggests a spring-like function, one that is surprisingly tunable by post-translational modification (PTM). Specifically, detyrosination of MTs facilitates an interaction with intermediate filaments that complex with the sarcomere, altering myocyte stiffness, contractility, and mechanosignalling. Such results support a paradigm of cytoskeletal regulation based on not only polymerization, but also associations with binding partners and PTMs that divide the MT cytoskeleton into functionally distinct subsets. The evolutionary costs and benefits of tuning cytoskeletal mechanics remain an open question, one that we discuss herein. Nevertheless, mechanically distinct MT subsets provide a rich new source of therapeutic targets for a variety of phenomena in the heart.


Assuntos
Microtúbulos/metabolismo , Células Musculares/metabolismo , Animais , Citoesqueleto/metabolismo , Humanos , Processamento de Proteína Pós-Traducional/fisiologia , Sarcômeros/metabolismo
15.
Biophys J ; 109(10): 2037-50, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26588563

RESUMO

Stretching single ventricular cardiac myocytes has been shown experimentally to activate transmembrane nicotinamide adenine dinucleotide phosphate oxidase type 2 to produce reactive oxygen species (ROS) and increase the Ca2+ spark rate in a process called X-ROS signaling. The increase in Ca2+ spark rate is thought to be due to an increase in ryanodine receptor type 2 (RyR2) open probability by direct oxidation of the RyR2 protein complex. In this article, a computational model is used to examine the regulation of ROS and calcium homeostasis by local, subcellular X-ROS signaling and its role in cardiac excitation-contraction coupling. To this end, a four-state RyR2 model was developed that includes an X-ROS-dependent RyR2 mode switch. When activated, [Ca2+]i-sensitive RyR2 open probability increases, and the Ca2+ spark rate changes in a manner consistent with experimental observations. This, to our knowledge, new model is used to study the transient effects of diastolic stretching and subsequent ROS production on RyR2 open probability, Ca2+ sparks, and the myoplasmic calcium concentration ([Ca2+]i) during excitation-contraction coupling. The model yields several predictions: 1) [ROS] is produced locally near the RyR2 complex during X-ROS signaling and increases by an order of magnitude more than the global ROS signal during myocyte stretching; 2) X-ROS activation just before the action potential, corresponding to ventricular filling during diastole, increases the magnitude of the Ca2+ transient; 3) during prolonged stretching, the X-ROS-induced increase in Ca2+ spark rate is transient, so that long-sustained stretching does not significantly increase sarcoplasmic reticulum Ca2+ leak; and 4) when the chemical reducing capacity of the cell is decreased, activation of X-ROS signaling increases sarcoplasmic reticulum Ca2+ leak and contributes to global oxidative stress, thereby increases the possibility of arrhythmia. The model provides quantitative information not currently obtainable through experimental means and thus provides a framework for future X-ROS signaling experiments.


Assuntos
Sinalização do Cálcio , Ventrículos do Coração/metabolismo , Modelos Cardiovasculares , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Ventrículos do Coração/citologia , Humanos , Miócitos Cardíacos/fisiologia , Função Ventricular
16.
Artigo em Inglês | MEDLINE | ID: mdl-38472035

RESUMO

Gene-targeted therapies for genetic neurodevelopmental disorders (NDDs) are becoming a reality. The Center for Epilepsy and Neurodevelopmental Disorders (ENDD) is currently focused on the development of therapeutics for STXBP1 and SYNGAP1 disorders. Here we review the known clinical features of these disorders, highlight the biological role of STXBP1 and SYNGAP1, and discuss our current understanding of pathogenic mechanisms and therapeutic development. Finally, we provide our perspective as scientists and parents of children with NDDs, and comment on the current challenges for both clinical and basic science endeavors.

17.
Ther Adv Rare Dis ; 5: 26330040241257221, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38898886

RESUMO

Syntaxin-binding protein 1 related disorder (STXBP1-RD) is a rare neurologic disorder associated with global neurodevelopmental delay, intellectual disability, early-onset epilepsy, motor abnormalities, and autism. The underlying pathophysiology stems from a de novo mutation in the STXBP1 gene, which codes for the STXBP1 protein. The STXBP1 protein is involved in synaptic vesicle fusion and neurotransmitter release. Pathogenic variants in the STXBP1 gene generally result in haploinsufficiency, an impairment in neurotransmitter release, and subsequent dysfunction in neuronal communication. The STXBP1 Foundation was founded in 2017 to support families of children with STXBP1-RD and accelerate the development of effective therapies and, ultimately, a cure for the disorder. The Foundation initially supported research aimed at better understanding the complex phenotypic presentation of the disease as well as the development of animal and cellular models usable by the research community to more fully characterize STXBP1 function and disease pathogenicity. In 2023, the Foundation embarked on its STXBP1 Fast Forward Strategic Plan, which includes a prospective natural history study and substantive biomarker work to drive forward the development of new precision therapies for STXBP1-RD.


STXBP1: fast-forward to a brighter future STXBP1-related disorder (STXBP1-RD) is a rare and severe brain condition. It causes delays in development, learning problems, seizures starting at an early age, movement challenges, and sometimes autism. The main problem comes from a new mutation in the STXBP1 gene, which makes a protein needed for brain cells to communicate properly. When this gene doesn't work right, there's not enough of the protein, leading to trouble with brain cell communication. To help families dealing with this disorder and speed up the search for effective therapies, the STXBP1 Foundation started in 2017. At first, they funded studies to understand the disease better and create models for testing treatments. Then, in 2023, they launched the STXBP1 Fast Forward Strategic Plan. This plan includes studying how the disorder progresses naturally and researching markers that could help develop precise treatments for STXBP1-RD.

18.
bioRxiv ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38948795

RESUMO

Nuclear homeostasis requires a balance of forces between the cytoskeleton and nucleus. Variants in LMNA disrupt this balance by weakening the nuclear lamina, resulting in nuclear damage in contractile tissues and ultimately muscle disease. Intriguingly, disrupting the LINC complex that connects the cytoskeleton to the nucleus has emerged as a promising strategy to ameliorate LMNA cardiomyopathy. Yet how LINC disruption protects the cardiomyocyte nucleus remains unclear. To address this, we developed an assay to quantify the coupling of cardiomyocyte contraction to nuclear deformation and interrogated its dependence on the lamina and LINC complex. We found that the LINC complex was surprisingly dispensable for transferring the majority of contractile strain into the nucleus, and that increased nuclear strain in Lmna- deficient myocytes was not rescued by LINC disruption. However, LINC disruption eliminated the cage of microtubules encircling the nucleus, and disrupting microtubules was sufficient to prevent nuclear damage induced by LMNA deficiency. Through computational modeling we simulated the mechanical stress fields surrounding cardiomyocyte nuclei and show how microtubule compression exploits local vulnerabilities to damage LMNA -deficient nuclei. Our work pinpoints localized, microtubule-dependent force transmission through the LINC complex as a pathological driver and therapeutic target for LMNA cardiomyopathy.

19.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37292763

RESUMO

Rationale: Hypertrophic cardiomyopathy (HCM) is the most common cardiac genetic disorder caused by sarcomeric gene variants and associated with left ventricular (LV) hypertrophy and diastolic dysfunction. The role of the microtubule network has recently gained interest with the findings that -α-tubulin detyrosination (dTyr-tub) is markedly elevated in heart failure. Acute reduction of dTyr-tub by inhibition of the detyrosinase (VASH/SVBP complex) or activation of the tyrosinase (tubulin tyrosine ligase, TTL) markedly improved contractility and reduced stiffness in human failing cardiomyocytes, and thus poses a new perspective for HCM treatment. Objective: In this study, we tested the impact of chronic tubulin tyrosination in a HCM mouse model ( Mybpc3 -knock-in; KI), in human HCM cardiomyocytes and in SVBP-deficient human engineered heart tissues (EHTs). Methods and Results: AAV9-mediated TTL transfer was applied in neonatal wild-type (WT) rodents and 3-week-old KI mice and in HCM human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. We show that i) TTL for 6 weeks dose-dependently reduced dTyr-tub and improved contractility without affecting cytosolic calcium transients in WT cardiomyocytes; ii) TTL for 12 weeks improved diastolic filling, cardiac output and stroke volume and reduced stiffness in KI mice; iii) TTL for 10 days normalized cell hypertrophy in HCM hiPSC-cardiomyocytes; iv) TTL induced a marked transcription and translation of several tubulins and modulated mRNA or protein levels of components of mitochondria, Z-disc, ribosome, intercalated disc, lysosome and cytoskeleton in KI mice; v) SVBP-deficient EHTs exhibited reduced dTyr-tub levels, higher force and faster relaxation than TTL-deficient and WT EHTs. RNA-seq and mass spectrometry analysis revealed distinct enrichment of cardiomyocyte components and pathways in SVBP-KO vs. TTL-KO EHTs. Conclusion: This study provides the first proof-of-concept that chronic activation of tubulin tyrosination in HCM mice and in human EHTs improves heart function and holds promise for targeting the non-sarcomeric cytoskeleton in heart disease.

20.
J Mol Cell Cardiol ; 58: 172-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23220288

RESUMO

X-ROS signaling is a novel redox signaling pathway that links mechanical stress to changes in [Ca(2+)]i. This pathway is activated rapidly and locally within a muscle cell under physiological conditions, but can also contribute to Ca(2+)-dependent arrhythmia in the heart and to the dystrophic phenotype in the heart and skeletal muscle. Upon physiologic cellular stretch, microtubules serve as mechanotransducers to activate NADPH oxidase 2 in the transverse tubules and sarcolemmal membranes to produce reactive oxygen species (ROS). In the heart, the ROS acts locally to activate ryanodine receptor Ca(2+) release channels in the junctional sarcoplasmic reticulum, increasing the Ca(2+) spark rate and "tuning" excitation-contraction coupling. In the skeletal muscle, where Ca(2+) sparks are not normally observed, the X-ROS signaling process is muted. However in muscular dystrophies, such as Duchenne Muscular Dystrophy and dysferlinopathy, X-ROS signaling operates at a high level and contributes to myopathy. Importantly, Ca(2+) permeable stretch-activated channels are activated by X-ROS and contribute to skeletal muscle pathology. Here we review X-ROS signaling and mechanotransduction in striated muscle, and highlight important questions to drive future work on stretch-dependent signaling. We conclude that X-ROS provides an exciting mechanism for the mechanical control of redox and Ca(2+) signaling, but much work is needed to establish its contribution to physiologic and pathophysiologic processes in diverse cell systems.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Humanos , Músculo Esquelético/patologia , Miócitos Cardíacos , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA