Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nature ; 631(8022): 867-875, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987588

RESUMO

Chronic hepatitis B virus (HBV) infection affects 300 million patients worldwide1,2, in whom virus-specific CD8 T cells by still ill-defined mechanisms lose their function and cannot eliminate HBV-infected hepatocytes3-7. Here we demonstrate that a liver immune rheostat renders virus-specific CD8 T cells refractory to activation and leads to their loss of effector functions. In preclinical models of persistent infection with hepatotropic viruses such as HBV, dysfunctional virus-specific CXCR6+ CD8 T cells accumulated in the liver and, as a characteristic hallmark, showed enhanced transcriptional activity of cAMP-responsive element modulator (CREM) distinct from T cell exhaustion. In patients with chronic hepatitis B, circulating and intrahepatic HBV-specific CXCR6+ CD8 T cells with enhanced CREM expression and transcriptional activity were detected at a frequency of 12-22% of HBV-specific CD8 T cells. Knocking out the inhibitory CREM/ICER isoform in T cells, however, failed to rescue T cell immunity. This indicates that CREM activity was a consequence, rather than the cause, of loss in T cell function, further supported by the observation of enhanced phosphorylation of protein kinase A (PKA) which is upstream of CREM. Indeed, we found that enhanced cAMP-PKA-signalling from increased T cell adenylyl cyclase activity augmented CREM activity and curbed T cell activation and effector function in persistent hepatic infection. Mechanistically, CD8 T cells recognizing their antigen on hepatocytes established close and extensive contact with liver sinusoidal endothelial cells, thereby enhancing adenylyl cyclase-cAMP-PKA signalling in T cells. In these hepatic CD8 T cells, which recognize their antigen on hepatocytes, phosphorylation of key signalling kinases of the T cell receptor signalling pathway was impaired, which rendered them refractory to activation. Thus, close contact with liver sinusoidal endothelial cells curbs the activation and effector function of HBV-specific CD8 T cells that target hepatocytes expressing viral antigens by means of the adenylyl cyclase-cAMP-PKA axis in an immune rheostat-like fashion.


Assuntos
Linfócitos T CD8-Positivos , Hepatite B Crônica , Fígado , Animais , Humanos , Masculino , Camundongos , Linfócitos T CD8-Positivos/enzimologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Fígado/imunologia , Fígado/virologia , Fosforilação , Transdução de Sinais , Ativação Linfocitária
2.
J Gen Virol ; 105(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38757942

RESUMO

Since its discovery in 1965, our understanding of the hepatitis B virus (HBV) replication cycle and host immune responses has increased markedly. In contrast, our knowledge of the molecular biology of hepatitis delta virus (HDV), which is associated with more severe liver disease, is less well understood. Despite the progress made, critical gaps remain in our knowledge of HBV and HDV replication and the mechanisms underlying viral persistence and evasion of host immunity. The International HBV Meeting is the leading annual scientific meeting for presenting the latest advances in HBV and HDV molecular virology, immunology, and epidemiology. In 2023, the annual scientific meeting was held in Kobe, Japan and this review summarises some of the advances presented at the Meeting and lists gaps in our knowledge that may facilitate the development of new therapies.


Assuntos
Vírus da Hepatite B , Hepatite B , Vírus Delta da Hepatite , Replicação Viral , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/imunologia , Humanos , Vírus Delta da Hepatite/genética , Vírus Delta da Hepatite/fisiologia , Hepatite B/virologia , Hepatite B/imunologia , Biologia Molecular , Japão , Hepatite D/virologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética
3.
J Med Virol ; 96(6): e29739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899449

RESUMO

This longitudinal prospective controlled multicenter study aimed to monitor immunity generated by three exposures caused by breakthrough infections (BTI) after COVID-19-vaccination considering pre-existing cell-mediated immunity to common-corona-viruses (CoV) which may impact cellular reactivity against SARS-CoV-2. Anti-SARS-CoV-2-spike-IgG antibodies (anti-S-IgG) and cellular reactivity against Spike-(S)- and nucleocapsid-(N)-proteins were determined in fully-vaccinated (F) individuals who either experienced BTI (F+BTI) or had booster vaccination (F+Booster) compared to partially vaccinated (P+BTI) and unvaccinated (U) from 1 to 24 weeks post PCR-confirmed infection. High avidity anti-S-IgG were found in F+BTI compared to U, the latter exhibiting increased long-lasting pro-inflammatory cytokines to S-stimulation. CoV was associated with higher cellular reactivity in U, whereas no association was seen in F. The study illustrates the induction of significant S-specific cellular responses in F+BTI building-up basic immunity by three exposures. Only U seem to benefit from pre-existing CoV immunity but demonstrated inflammatory immune responses compared to F+BTI who immunologically benefit from enhanced humoral and cellular immunity after BTI. This study demonstrates that individuals with hybrid immunity from COVID-19-vaccination and BTI acquire a stable humoral and cellular immune response that is maintained for at least 6 months. Our findings corroborate recommendations by health authorities to build on basic immunity by three S-protein exposures.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunidade Celular , Glicoproteína da Espícula de Coronavírus , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Infecções Irruptivas/imunologia , Infecções Irruptivas/prevenção & controle , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Citocinas/imunologia , Imunização Secundária , Imunoglobulina G/sangue , Estudos Longitudinais , Fosfoproteínas/imunologia , Estudos Prospectivos , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
4.
Virol J ; 21(1): 139, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877590

RESUMO

BACKGROUND: Infection with the Epstein-Barr virus (EBV) elicits a complex T-cell response against a broad range of viral proteins. Hence, identifying potential differences in the cellular immune response of patients with different EBV-associated diseases or different courses of the same disorder requires interrogation of a maximum number of EBV antigens. Here, we tested three novel EBV-derived antigen formulations for their ability to reactivate virus-specific T cells ex vivo in patients with EBV-associated infectious mononucleosis (IM). METHODS: We comparatively analyzed EBV-specific CD4+ and CD8+ T-cell responses to three EBV-derived antigen formulations in 20 pediatric patients during the early phase of IM: T-activated EBV proteins (BZLF1, EBNA3A) and EBV-like particles (EB-VLP), both able to induce CD4+ and CD8+ T-cell responses ex vivo, as well as an EBV-derived peptide pool (PP) covering 94 well-characterized CD8+ T-cell epitopes. We assessed the specificity, magnitude, kinetics, and functional characteristics of EBV-specific immune responses at two sequential time points (v1 and v2) within the first six weeks after IM symptom onset (Tonset). RESULTS: All three tested EBV-derived antigen formulations enabled the detection of EBV-reactive T cells during the early phase of IM without prior T-cell expansion in vitro. EBV-reactive CD4+ and CD8+ T cells were mainly mono-functional (CD4+: mean 64.92%, range 56.15-71.71%; CD8+: mean 58.55%, range 11.79-85.22%) within the first two weeks after symptom onset (v1) with IFN-γ and TNF-secreting cells representing the majority of mono-functional EBV-reactive T cells. By contrast, PP-reactive CD8+ T cells were primarily bi-functional (>60% at v1 and v2), produced IFN-γ and TNF and had more tri-functional than mono-functional components. We observed a moderate correlation between viral load and EBNA3A, EB-VLP, and PP-reactive CD8+ T cells (rs = 0.345, 0.418, and 0.356, respectively) within the first two weeks after Tonset, but no correlation with the number of detectable EBV-reactive CD4+ T cells. CONCLUSIONS: All three EBV-derived antigen formulations represent innovative and generic recall antigens suitable for monitoring EBV-specific T-cell responses ex vivo. Their combined use facilitates a thorough analysis of EBV-specific T-cell immunity and allows the identification of functional T-cell signatures linked to disease development and severity.


Assuntos
Antígenos Virais , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Herpesvirus Humano 4 , Mononucleose Infecciosa , Humanos , Mononucleose Infecciosa/imunologia , Mononucleose Infecciosa/virologia , Antígenos Virais/imunologia , Herpesvirus Humano 4/imunologia , Criança , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Masculino , Adolescente , Pré-Escolar , Epitopos de Linfócito T/imunologia
5.
Med Microbiol Immunol ; 213(1): 18, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101951

RESUMO

Outbreaks of emerging diseases, like Mpox in 2022, pose unprecedented challenges to global healthcare systems. Although Mpox cases globally decreased since the end of 2022, numbers are still significant in the African Region, European Region, Region of the Americas, and Western Pacific Region. Rapid and efficient detection of infected individuals by precise screening assays is crucial for successful containment. In these assays, analytical and clinical performance must be assessed to ensure high quality. However, clinical studies evaluating Mpox virus (MPXV) detection kits using patient-derived samples are scarce. This study evaluated the analytical and clinical performance of a new diagnostic MPXV real-time PCR detection kit (Sansure Monkeypox Virus Nucleic Acid Diagnostic Kit) using patient-derived samples collected in Germany during the MPXV clade IIb outbreak in 2022. Our experimental approach determined the Limit of Detection (LoD) to less than 200 cp/mL using whole blood samples and samples derived from vesicles or pustules. Furthermore, we tested potentially inhibiting substances and pathogens with homologous nucleic acid sequences or similar clinical presentation and detected no cross-reactivity or interference. Following this, the assay was compared to a CE-marked test in a clinical performance study and achieved a diagnostic sensitivity of 100.00% and diagnostic specificity of 96.97%. In summary, the investigated real-time PCR assay demonstrates high analytical performance and concurs with the competitor device with high specificity and sensitivity.


Assuntos
Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Alemanha/epidemiologia , Mpox/diagnóstico , Mpox/virologia , Kit de Reagentes para Diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Limite de Detecção , Surtos de Doenças , Parapoxvirus/isolamento & purificação , Parapoxvirus/genética
6.
Antiviral Res ; 229: 105972, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084340

RESUMO

Bispecific antibodies (bsAbs) are engineered immunoglobulins that combine two different antigen-binding sites in one molecule. BsAbs can be divided into two molecular formats: IgG-like and non-IgG-like antibodies. Structural elements of each format have implications for engaging the immune system. T cell engager antibodies (TCEs) are bsAbs designed to engage T cells with target cells. TCEs can be applied not only in cancer but also in infectious disease therapy to activate T-cell responses. In this review, we focus on current literature on the design and use of bsAbs as an innovative strategy to enhance adaptive antiviral immune responses. We summarized the novel T cell-related immunotherapies with a focus on TCEs, that are developed for the treatment of chronic hepatitis B. Chronic infection with the hepatitis B virus (HBV) had a death toll of 1.1 million humans in 2022, mainly due to liver cirrhosis and hepatocellular carcinoma developing in the more than 250 million humans chronically infected. A curative treatment approach for chronic hepatitis B is lacking. Combining antiviral therapy with immune therapies activating T-cell responses is regarded as the most promising therapeutic approach to curing HBV and preventing the sequelae of chronic infection. Attracting functionally intact T cells that are not HBV-specific and, therefore, have not yet been exposed to regulatory mechanisms and activating those at the target site in the liver is a very interesting therapeutic approach that could be achieved by TCEs. Thus, TCEs redirecting T cells toward HBV-positive cells represent a promising strategy for treating chronic hepatitis B and HBV-associated hepatocellular carcinoma.


Assuntos
Imunidade Adaptativa , Anticorpos Biespecíficos , Vírus da Hepatite B , Hepatite B Crônica , Imunoterapia , Linfócitos T , Humanos , Hepatite B Crônica/imunologia , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/terapia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Linfócitos T/imunologia , Vírus da Hepatite B/imunologia , Imunoterapia/métodos , Antivirais/uso terapêutico , Antivirais/farmacologia , Animais
7.
ACS Appl Mater Interfaces ; 16(20): 25836-25842, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728653

RESUMO

We demonstrate the use of DNA origami to create virus-trapping nanoshells that efficiently neutralize hepatitis B virus (HBV) in cell culture. By modification of the shells with a synthetic monoclonal antibody that binds to the HBV envelope, the effective neutralization potency per antibody is increased by approximately 100 times compared to using free antibodies. The improvements in neutralizing the virus are attributed to two factors: first, the shells act as a physical barrier that blocks the virus from interacting with host cells; second, the multivalent binding of the antibodies inside the shells lead to stronger attachment to the trapped virus, a phenomenon known as avidity. Pre-incubation of shells with HBV and simultaneous addition of both components separately to cells lead to comparable levels of neutralization, indicating rapid trapping of the virions by the shells. Our study highlights the potential of the DNA shell system to rationally create antivirals using components that, when used individually, show little to no antiviral effectiveness.


Assuntos
DNA , Vírus da Hepatite B , Nanoconchas , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Nanoconchas/química , DNA/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Testes de Neutralização , Antivirais/química , Antivirais/farmacologia
8.
Methods Mol Biol ; 2837: 207-218, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39044087

RESUMO

Mice infected with a recombinant adeno-associated virus carrying a replication-competent hepatitis B virus genome (rAAV-HBV) via the intravenous route establish a persistent HBV replication in hepatocytes and develop immune tolerance. They serve as models to evaluate antiviral immunity and to assess potential therapeutic approaches for chronic HBV infection. Combining selected HBV variants and different mouse genotypes allows for addressing a broad spectrum of research questions. This chapter describes the basic principles of the rAAV-HBV mouse model, rAAV-HBV production and purification methods, and finally, the in vivo application.


Assuntos
Dependovirus , Modelos Animais de Doenças , Vetores Genéticos , Vírus da Hepatite B , Replicação Viral , Animais , Dependovirus/genética , Dependovirus/isolamento & purificação , Vírus da Hepatite B/genética , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Humanos , Hepatite B Crônica/virologia , Hepatite B Crônica/imunologia , Hepatite B/virologia , Hepatite B/imunologia
9.
Antiviral Res ; 226: 105896, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679167

RESUMO

Immune tolerance to the hepatitis B virus (HBV) is crucial for developing chronic hepatitis B, and the HBV surface antigen (HBsAg) produced and secreted in high amounts is regarded as a key contributor. HBsAg is expressed in HBV-infected hepatocytes and those carrying an HBV integration. Whether either HBsAg secretion or the high antigen amount expressed in the liver determines its immunomodulatory properties, however, remains unclear. We, therefore, developed a novel HBV animal model that allowed us to study the role of secreted HBsAg. We introduced a previously described HBs mutation, C65S, abolishing HBsAg secretion into a replication-competent 1.3-overlength HBV genome and used adeno-associated virus vectors to deliver it to the mouse liver. The AAV-HBV established a carrier state of wildtype and C65S mutant HBV, respectively. We investigated antiviral B- and T-cell immunity in the HBV-carrier mice after therapeutic vaccination. Moreover, we compared the effect of a lacking HBsAg secretion with that of an antiviral siRNA. While missing HBsAg secretion allowed for higher levels of detectable anti-HBs antibodies after therapeutic vaccination, it did neither affect antiviral T-cell responses nor intrahepatic HBV gene expression, irrespective of the starting level. A treatment with HBV siRNA restricting viral antigen expression within hepatocytes, however, improved the antiviral efficacy of therapeutic vaccination, irrespective of the ability of HBV to secrete HBsAg. Our data indicate that clearing HBsAg from blood cannot significantly impact HBV persistence or T-cell immunity. This indicates that a restriction of hepatic viral antigen expression will be required to break HBV immunotolerance.


Assuntos
Modelos Animais de Doenças , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Linfócitos T , Animais , Antígenos de Superfície da Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/genética , Camundongos , Linfócitos T/imunologia , Fígado/imunologia , Fígado/virologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Hepatite B/imunologia , Hepatite B/virologia , Mutação , Camundongos Endogâmicos C57BL , Dependovirus/genética , Dependovirus/imunologia , Anticorpos Anti-Hepatite B/sangue , Anticorpos Anti-Hepatite B/imunologia , Hepatócitos/virologia , Hepatócitos/imunologia , Humanos
10.
One Health ; 18: 100674, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39010962

RESUMO

Hepatitis E virus (HEV) is a major cause of acute viral hepatitis worldwide. Up to now, no approved treatment nor a globally licensed vaccine is available. Several recombinant HEV vaccines have been developed to protect against HEV infection in humans, including the commercially available Hecolin vaccine, which are mainly based on HEV genotype 1. However, the efficacy of these vaccines against other HEV genotypes, especially genotype 3 is unknown. In this study, we evaluated the protective efficacy of Hecolin® and a novel genotype 3-based vaccine p239(gt3) against HEV-3 in a pig infection model. Pigs were divided into three groups: one group was vaccinated with Hecolin®, the second group was vaccinated with p239(gt3), and the control group received no vaccine. All pigs were subsequently challenged with HEV genotype 3 to assess the effectiveness of the vaccines. Although all immunised animals developed a high titer of neutralizing antibodies, the results showed that both vaccine applications could not provide complete protection against HEV (gt3) infection: Two out of four animals of the Hecolin® group displayed even virus shedding, and viral RNA could be detected in bile and/or liver of three out of four animals in both vaccination groups. Only one out of four animals in each group was fully protected. Neither Hecolin® nor the novel p239(gt3) vaccine provided sufficient protection against genotype 3 infection. While Hecolin® only partial protected pigs from HEV shedding, the novel p239(gt3) vaccine was at least able to prevent infected pigs from virus shedding. The results highlight the need for further development of HEV vaccines that exhibit broad protection against multiple HEV genotypes and the use of appropriate animal infection models.

11.
Viruses ; 16(5)2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38793623

RESUMO

Hepatitis B virus (HBV) is a major driver of chronic hepatic inflammation, which regularly leads to liver cirrhosis or hepatocellular carcinoma. Immediate innate immune cell response is crucial for the rapid clearance of the infection. Here, natural killer (NK) cells play a pivotal role in direct cytotoxicity and the secretion of antiviral cytokines as well as regulatory function. The aim of this study was to further elucidate NK cell responses triggered by an HBV infection. Therefore, we optimized HBV in vitro models that reliably stimulate NK cells using hepatocyte-like HepG2 cells expressing the Na+-taurocholate co-transporting polypeptide (NTCP) and HepaRG cells. Immune cells were acquired from healthy platelet donors. Initially, HepG2-NTCP cells demonstrated higher viral replication compared to HepaRG cells. Co-cultures with immune cells revealed increased production of interferon-γ and tumor necrosis factor-α by NK cells, which was no longer evident in isolated NK cells. Likewise, the depletion of monocytes and spatial separation from target cells led to the absence of the antiviral cytokine production of NK cells. Eventually, the combined co-culture of isolated NK cells and monocytes led to a sufficient cytokine response of NK cells, which was also apparent when communication between the two immune cell subpopulations was restricted to soluble factors. In summary, our study demonstrates antiviral cytokine production by NK cells in response to HBV+ HepG2-NTCP cells, which is dependent on monocyte bystander activation.


Assuntos
Técnicas de Cocultura , Citocinas , Vírus da Hepatite B , Hepatite B , Células Matadoras Naturais , Monócitos , Humanos , Células Matadoras Naturais/imunologia , Monócitos/imunologia , Monócitos/virologia , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/fisiologia , Citocinas/metabolismo , Células Hep G2 , Hepatite B/imunologia , Hepatite B/virologia , Replicação Viral , Interferon gama/metabolismo , Interferon gama/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Hepatócitos/virologia , Hepatócitos/imunologia
12.
Vaccines (Basel) ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38400138

RESUMO

Adenoviral vectors based on the human adenovirus species C serotype 5 (HAdV-C5) are commonly used for vector-based gene therapies and vaccines. In the preclinical stages of development, their safety and efficacy are often validated in suitable animal models. However, pre-existing neutralizing antibodies may severely influence study outcomes. Here, we generated a new HAdV-C5-based reporter vector and established a high-throughput screening assay for the multivalent detection of HAdV-C5-neutralizing antibodies in serum. We screened the sera of rhesus macaques at different primate centers, and of rabbits, horses, cats, and dogs, showing that HAdV-C5-neutralizing antibodies can be found in all species, albeit at different frequencies. Our results emphasize the need to prescreen model animals in HAdV-C5-based studies.

13.
JHEP Rep ; 6(4): 100997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38425450

RESUMO

Background & Aims: Particulate hepatitis B core antigen (HBcoreAg) is a potent immunogen used as a vaccine carrier platform. HBcoreAg produced in E. coli encapsidates random bacterial RNA (bRNA). Using the heterologous protein-prime, viral-vector-boost therapeutic hepatitis B vaccine TherVacB, we compared the properties of different HBcoreAg forms. We explored how the content of HBcoreAg modulates antigen stability, immunogenicity, and antiviral efficacy. Methods: bRNA was removed from HBcoreAg by capsid disassembly, followed by reassembly in the absence or presence of specific nucleic acid-based adjuvants poly I:C or CpG. The morphology and structure of empty, bRNA-containing and adjuvant-loaded HBcoreAg were monitored by electron microscopy and nuclear magnetic resonance spectroscopy. Empty, bRNA-containing or adjuvant-loaded HBcoreAg were applied together with HBsAg and with or without nucleic acid-based external adjuvants within the TherVacB regimen in both wild-type and HBV-carrier mice. Results: While HBcoreAg retained its structure upon bRNA removal, its stability and immunogenicity decreased significantly. Loading HBcoreAg with nucleic acid-based adjuvants re-established stability of the capsid-like antigen. Immunization with poly I:C- or CpG-loaded HBcoreAg induced high antibody titers against co-administered HBsAg. When applied within the TherVacB regimen, they activated vigorous HBcoreAg- and HBsAg-specific T-cell responses in wild-type and HBV-carrier mice, requiring a significantly lower dose of adjuvant compared to externally added adjuvant. Finally, immunization with adjuvant-loaded HBcoreAg mixed with HBsAg led to long-term control of persistent HBV replication in the HBV-carrier mice. Conclusion: Adjuvant-loaded HBcoreAg retained capsid integrity and stability, was as immunogenic in vivo as externally adjuvanted HBcoreAg, requiring lower adjuvant levels, and supported immunity against co-administered, non-adjuvanted HBsAg. Thus, adjuvant-loaded HBcoreAg represents a promising novel platform for vaccine development. Impact and implications: Hepatitis B core antigen (HBcoreAg) recapitulates the capsid of the HBV that hosts the viral genome. Produced recombinantly, it is not infectious but emerges as a potent immunogen in vaccine development. In this preclinical study, we show that loading HBcoreAg with defined nucleic-acid-based adjuvants on the one hand stabilizes the HBcoreAg with standardized capsid content and, on the other hand, efficiently promotes the immunity of HBcoreAg and a co-administered antigen, allowing for reduced adjuvant doses. Therefore, adjuvant-loaded HBcoreAg not only serves as an encouraging option for therapeutic hepatitis B vaccines, but could also act as an efficient adjuvant delivery system for other types of vaccine.

14.
Microbiol Spectr ; 12(5): e0378823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38567974

RESUMO

The key to a curative treatment of hepatitis B virus (HBV) infection is the eradication of the intranuclear episomal covalently closed circular DNA (cccDNA), the stable persistence reservoir of HBV. Currently, established therapies can only limit HBV replication but fail to tackle the cccDNA. Thus, novel therapeutic approaches toward curative treatment are urgently needed. Recent publications indicated a strong association between the HBV core protein SUMOylation and the association with promyelocytic leukemia nuclear bodies (PML-NBs) on relaxed circular DNA to cccDNA conversion. We propose that interference with the cellular SUMOylation system and PML-NB integrity using arsenic trioxide provides a useful tool in the treatment of HBV infection. Our study showed a significant reduction in HBV-infected cells, core protein levels, HBV mRNA, and total DNA. Additionally, a reduction, albeit to a limited extent, of HBV cccDNA could be observed. Furthermore, this interference was also applied for the treatment of an established HBV infection, characterized by a stably present nuclear pool of cccDNA. Arsenic trioxide (ATO) treatment not only changed the amount of expressed HBV core protein but also induced a distinct relocalization to an extranuclear phenotype during infection. Moreover, ATO treatment resulted in the redistribution of transfected HBV core protein away from PML-NBs, a phenotype similar to that previously observed with SUMOylation-deficient HBV core. Taken together, these findings revealed the inhibition of HBV replication by ATO treatment during several steps of the viral replication cycle, including viral entry into the nucleus as well as cccDNA formation and maintenance. We propose ATO as a novel prospective treatment option for further pre-clinical and clinical studies against HBV infection. IMPORTANCE: The main challenge for the achievement of a functional cure for hepatitis B virus (HBV) is the covalently closed circular DNA (cccDNA), the highly stable persistence reservoir of HBV, which is maintained by further rounds of infection with newly generated progeny viruses or by intracellular recycling of mature nucleocapsids. Eradication of the cccDNA is considered to be the holy grail for HBV curative treatment; however, current therapeutic approaches fail to directly tackle this HBV persistence reservoir. The molecular effect of arsenic trioxide (ATO) on HBV infection, protein expression, and cccDNA formation and maintenance, however, has not been characterized and understood until now. In this study, we reveal ATO treatment as a novel and innovative therapeutic approach against HBV infections, repressing viral gene expression and replication as well as the stable cccDNA pool at low micromolar concentrations by affecting the cellular function of promyelocytic leukemia nuclear bodies.


Assuntos
Trióxido de Arsênio , Núcleo Celular , DNA Circular , DNA Viral , Vírus da Hepatite B , Hepatite B , Sumoilação , Replicação Viral , Trióxido de Arsênio/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Vírus da Hepatite B/fisiologia , Humanos , Replicação Viral/efeitos dos fármacos , Hepatite B/virologia , Hepatite B/tratamento farmacológico , Hepatite B/metabolismo , Sumoilação/efeitos dos fármacos , DNA Circular/genética , DNA Circular/metabolismo , Núcleo Celular/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Antivirais/farmacologia , Proteínas do Core Viral/metabolismo , Proteínas do Core Viral/genética , Células Hep G2
15.
Front Immunol ; 15: 1340619, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711498

RESUMO

To design new CARs targeting hepatitis B virus (HBV), we isolated human monoclonal antibodies recognizing the HBV envelope proteins from single B cells of a patient with a resolved infection. HBV-specific memory B cells were isolated by incubating peripheral blood mononuclear cells with biotinylated hepatitis B surface antigen (HBsAg), followed by single-cell flow cytometry-based sorting of live, CD19+ IgG+ HBsAg+ cells. Amplification and sequencing of immunoglobulin genes from single memory B cells identified variable heavy and light chain sequences. Corresponding immunoglobulin chains were cloned into IgG1 expression vectors and expressed in mammalian cells. Two antibodies named 4D06 and 4D08 were found to be highly specific for HBsAg, recognized a conformational and a linear epitope, respectively, and showed broad reactivity and neutralization capacity against all major HBV genotypes. 4D06 and 4D08 variable chain fragments were cloned into a 2nd generation CAR format with CD28 and CD3zeta intracellular signaling domains. The new CAR constructs displayed a high functional avidity when expressed on primary human T cells. CAR-grafted T cells proved to be polyfunctional regarding cytokine secretion and killed HBV-positive target cells. Interestingly, background activation of the 4D08-CAR recognizing a linear instead of a conformational epitope was consistently low. In a preclinical model of chronic HBV infection, murine T cells grafted with the 4D06 and the 4D08 CAR showed on target activity indicated by a transient increase in serum transaminases, and a lower number of HBV-positive hepatocytes in the mice treated. This study demonstrates an efficient and fast approach to identifying pathogen-specific monoclonal human antibodies from small donor cell numbers for the subsequent generation of new CARs.


Assuntos
Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Humanos , Vírus da Hepatite B/imunologia , Vírus da Hepatite B/genética , Animais , Camundongos , Antígenos de Superfície da Hepatite B/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos Monoclonais/imunologia , Imunoterapia Adotiva , Hepatite B/imunologia , Hepatite B/virologia , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos T/imunologia
16.
Clin Mol Hepatol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808361

RESUMO

Background and Aims: HBV-DNA integration in HBV-related hepatocellular carcinoma (HBV-HCC) can be targeted by HBV-specific T cells. SCG101 is an autologous, HBV-specific T-cell product expressing a T-cell receptor (TCR) after lentiviral transduction recognizing the envelope-derived peptide (S20-28) on HLA-A2. We here validated its safety and efficacy preclinically and applied it in an HBV-related HCC patient (NCT05339321). Methods: GMP-grade manufactured cells were assessed for off-target reactivity and functionality against hepatoma cells. Subsequently, a patient with advanced HBV-HCC (Child-Pugh:A, BCLC:B, ECOG:0, HBeAg-, serum HBsAg+, hepatocytes 10% HBsAg+) received 7.9x107 cells/kg after lymphodepletion. Safety, T-cell persistence, and antiviral and antitumor efficacy were evaluated. Results: SCG101, produced at high numbers in a closed-bag system, showed HBV-specific functionality against HBV-hepatoma cells in vitro and in vivo. Clinically, treatment was well tolerated, and all adverse events, including transient hepatic damage, were reversible. On day 3, ALT levels increased to 1404 U/ml, and concurrently, serum HBsAg started decreasing by 3.84log and remained <1 IU/ml for over six months. HBsAg expressing hepatocytes in liver biopsies were undetectable after73 days. The patient achieved a partial response according to mRECIST score with a >70% reduction of target lesion size. Transferred T cells expanded, developed a stem cell-like memory phenotype, and were still detectable after six months in the patient's blood. Conclusions: SCG101 T-cell therapy showed encouraging efficacy and safety in pre-clinical models and in a patient with primary HBV-HCC and concomitant chronic hepatitis B with the capability to eliminate HBsAg+ cells and achieve sustained tumor control after single dosing.

17.
Sci Rep ; 14(1): 5768, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459123

RESUMO

The SARS-CoV-2 pandemic has highlighted the need to better define in-hospital transmissions, a need that extends to all other common infectious diseases encountered in clinical settings. To evaluate how whole viral genome sequencing can contribute to deciphering nosocomial SARS-CoV-2 transmission 926 SARS-CoV-2 viral genomes from 622 staff members and patients were collected between February 2020 and January 2021 at a university hospital in Munich, Germany, and analysed along with the place of work, duration of hospital stay, and ward transfers. Bioinformatically defined transmission clusters inferred from viral genome sequencing were compared to those inferred from interview-based contact tracing. An additional dataset collected at the same time at another university hospital in the same city was used to account for multiple independent introductions. Clustering analysis of 619 viral genomes generated 19 clusters ranging from 3 to 31 individuals. Sequencing-based transmission clusters showed little overlap with those based on contact tracing data. The viral genomes were significantly more closely related to each other than comparable genomes collected simultaneously at other hospitals in the same city (n = 829), suggesting nosocomial transmission. Longitudinal sampling from individual patients suggested possible cross-infection events during the hospital stay in 19.2% of individuals (14 of 73 individuals). Clustering analysis of SARS-CoV-2 whole genome sequences can reveal cryptic transmission events missed by classical, interview-based contact tracing, helping to decipher in-hospital transmissions. These results, in line with other studies, advocate for viral genome sequencing as a pathogen transmission surveillance tool in hospitals.


Assuntos
COVID-19 , Infecção Hospitalar , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/genética , Genoma Viral/genética , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/genética , Hospitais Universitários
18.
Vaccines (Basel) ; 12(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543942

RESUMO

BACKGROUND: Hemodialysis patients have reduced serologic immunity after SARS-CoV-2 vaccination compared to the general population and an increased risk of morbidity and mortality when exposed to SARS-CoV-2. METHODS: Sixty-six hemodialysis patients immunized four times with the original SARS-CoV-2 vaccines (BNT162b2, mRNA-1273) either received a booster with the adapted Comirnaty Original/Omicron BA.4-5 vaccine 8.3 months after the fourth vaccination and/or experienced a breakthrough infection. Two months before and four weeks after the fifth vaccination, the live-virus neutralization capacities of Omicron variants BA.5, BQ.1.1, and XBB.1.5 were determined, as well as neutralizing and quantitative anti-SARS-CoV-2 spike-specific IgG antibodies. RESULTS: Four weeks after the fifth vaccination with the adapted vaccine, significantly increased neutralizing antibodies and the neutralization of Omicron variants BA.5, BQ.1.1, and XBB.1.5 were observed. The increase was significantly higher than after the fourth vaccination for variants BQ.1.1 and BA.5. Of all analyzed variants, BA.5 was neutralized best after the fifth vaccination. We did not see a difference in humoral immunity between the group with an infection and the group with a vaccination as a fifth spike exposure. Fivefold-vaccinated patients with a breakthrough infection showed a significantly higher neutralization capacity of XBB.1.5. CONCLUSION: A fifth SARS-CoV-2 vaccination with the adapted vaccine improves both wild-type specific antibody titers and the neutralizing capacity of the current Omicron variants BA.5, BQ.1.1, and XBB.1.5 in hemodialysis patients. Additional booster vaccinations with adapted vaccines will likely improve immunity towards current and original SARS-CoV-2 variants and are, therefore, recommended in hemodialysis patients. Further longitudinal studies must show the extent to which this booster vaccination avoids a breakthrough infection.

19.
J Control Release ; 371: 179-192, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795814

RESUMO

The delivery of vaccines plays a pivotal role in influencing the strength and longevity of the immune response and controlling reactogenicity. Mucosal immunization, as compared to parenteral vaccination, could offer greater protection against respiratory infections while being less invasive. While oral vaccination has been presumed less effective and believed to target mainly the gastrointestinal tract, trans-buccal delivery using mucoadhesive films (MAF) may allow targeted delivery to the mucosa. Here we present an effective strategy for mucosal delivery of several vaccine platforms incorporated in MAF, including DNA plasmids, viral vectors, and lipid nanoparticles incorporating mRNA (mRNA/LNP). The mRNA/LNP vaccine formulation targeting SARS-CoV-2 as a proof of concept remained stable within MAF consisting of slowly releasing water-soluble polymers and an impermeable backing layer, facilitating enhanced penetration into the oral mucosa. This formulation elicited antibody and cellular responses comparable to the intramuscular injection, but also induced the production of mucosal IgAs, highlighting its efficacy, particularly for use as a booster vaccine and the potential advantage for protection against respiratory infections. The MAF vaccine preparation demonstrates significant advantages, such as efficient delivery, stability, and simple noninvasive administration with the potential to alleviate vaccine hesitancy.


Assuntos
Vacinas contra COVID-19 , Nanopartículas , Animais , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , Administração Oral , Nanopartículas/administração & dosagem , Mucosa Bucal/imunologia , COVID-19/prevenção & controle , Feminino , Camundongos Endogâmicos BALB C , SARS-CoV-2/imunologia , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipídeos/química , Lipídeos/administração & dosagem , RNA Mensageiro/administração & dosagem , Lipossomos
20.
Nat Commun ; 15(1): 6778, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117661

RESUMO

Multiple omics analyzes of Vaccinia virus (VACV) infection have defined molecular characteristics of poxvirus biology. However, little is known about the monkeypox (mpox) virus (MPXV) in humans, which has a different disease manifestation despite its high sequence similarity to VACV. Here, we perform an in-depth multi-omics analysis of the transcriptome, proteome, and phosphoproteome signatures of MPXV-infected primary human fibroblasts to gain insights into the virus-host interplay. In addition to expected perturbations of immune-related pathways, we uncover regulation of the HIPPO and TGF-ß pathways. We identify dynamic phosphorylation of both host and viral proteins, which suggests that MAPKs are key regulators of differential phosphorylation in MPXV-infected cells. Among the viral proteins, we find dynamic phosphorylation of H5 that influenced the binding of H5 to dsDNA. Our extensive dataset highlights signaling events and hotspots perturbed by MPXV, extending the current knowledge on poxviruses. We use integrated pathway analysis and drug-target prediction approaches to identify potential drug targets that affect virus growth. Functionally, we exemplify the utility of this approach by identifying inhibitors of MTOR, CHUK/IKBKB, and splicing factor kinases with potent antiviral efficacy against MPXV and VACV.


Assuntos
Fibroblastos , Monkeypox virus , Mpox , Proteínas Virais , Humanos , Monkeypox virus/genética , Fosforilação , Mpox/virologia , Mpox/metabolismo , Fibroblastos/virologia , Fibroblastos/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteoma/metabolismo , Interações Hospedeiro-Patógeno , Transdução de Sinais , Proteômica/métodos , Transcriptoma , Antivirais/farmacologia , Multiômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA