RESUMO
Estrogenic contaminants in the environment are linked to the occurrence of reproductive abnormalities in many aquatic species, including largemouth bass (Micropterus salmoides; LMB). Previous work has shown that many different types of xenoestrogens regulate expression of the Steroidogenic Acute Regulatory protein (StAR), a cholesterol-transporting protein vital to steroid hormone biosynthesis; however, the regulatory mechanisms of StAR are incompletely characterized in fish. To learn more about endogenous expression patterns of StAR in the ovary, LMB were collected from the St. John's River (Florida, USA) over an entire breeding season to investigate StAR expression. Plasma 17ß-estradiol (E2) and StAR mRNA levels were positively correlated in females, and StAR mRNA levels displayedâ¯~â¯100-fold increase between primary oocyte growth stages and final maturation. To further study the regulation of StAR, female LMB in the laboratory were fed at ≃2% of their weight on a diet laden with 17α-ethinylestradiol (EE2, 70 or 200â¯ng EE2 per gram feed). Diets were designed to achieve a physiologically-relevant exposure to EE2, and StAR expression was assessed in vivo. We observed a dose-dependent suppression of StAR mRNA levels, however both diets led to high, pharmacological levels in the blood and do not represent normal physiological ranges of estrogens. In the 200â¯ng EE2/gm feed group, ovarian StAR mRNA levels were suppressed to approximately 5% of that of the LMB control group. These investigations suggest that LMB StAR increases in expression during oocyte maturation and that it is suppressed by E2 feedback when estrogen levels are high, through the HPG axis. A 2.9â¯kb segment of the LMB StAR promoter was examined for putative E2 response elements using in silico software, and a putative estrogen receptor binding element (ERE/-1745) was predicted in the promoter. The functionality of the ERE was examined using MA-10 mouse Leydig cells transfected with the LMB StAR promoter. Estrogen receptor (ER) interaction with ERE/-1745 was evaluated under basal and human chorionic gonadotropin (hCG)-treated conditions in the presence and absence of E2. Chromatin immunoprecipitation (ChIP) experiments revealed that ESR1 binding to the promoter was enriched under basal conditions and E2 exposure elicited an increase in enrichment (4-fold) above that observed under basal conditions. ESR2 was not strongly enriched at the ERE/-1745 site, suggesting that StAR may be preferentially regulated by LMB estrogen receptor 1 (esr1). Taken together, these different experiments provide evidence that LMB StAR is under the control of estrogens and that ESR1 binds directly to the LMB StAR promoter in an E2-responsive manner.
Assuntos
Ovário/metabolismo , Fosfoproteínas/metabolismo , Receptores de Estrogênio/metabolismo , Reprodução/fisiologia , Animais , Bass , Feminino , TransfecçãoRESUMO
Fish vitellogenin synthesized and released from the liver of oviparous animals is taken up into oocytes by the vitellogenin receptor. This is an essential process in providing nutrient yolk to developing embryos to ensure successful reproduction. Here we disclose the full length vtgr cDNA sequence for largemouth bass (LMB) that reveals greater than 90% sequence homology with other fish vtgr sequences. We classify LMB Vtgr as a member of the low density lipoprotein receptor superfamily based on conserved domains and categorize as the short variant that is devoid of the O-glycan segment. Phylogenetic analysis places LMB Vtgr sequence into a well-supported monophyletic group of fish Vtgr. Real-time PCR showed that the greatest levels of LMB vtgr mRNA expression occurred in previtellogenic ovarian tissues. In addition, we reveal the effects of insulin, 17beta-estradiol (E(2)), and 11-ketotestosterone (11-KT) in modulation of vtgr, esr, and ar mRNAs in previtellogenic oocytes. Insulin increased vtgr expression levels in follicles ex vivo while exposure to E(2) or 11-KT did not result in modulation of expression. However, both steroids were able to repress insulin-induced vtgr transcript levels. Coexposure with insulin and E(2) or of insulin and 11-KT increased ovarian esr2b and ar mRNA levels, respectively, which suggest a role for these nuclear receptors in insulin-mediated signaling pathways. These data provide the first evidence for the ordered stage-specific expression of LMB vtgr during the normal reproductive process and the hormonal influence of insulin and sex steroids on controlling vtgr transcript levels in ovarian tissues.
Assuntos
Bass , Proteínas do Ovo/genética , Hormônios Esteroides Gonadais/farmacologia , Insulina/farmacologia , Oócitos/efeitos dos fármacos , Receptores de Superfície Celular/genética , Sequência de Aminoácidos , Animais , Bass/genética , Bass/metabolismo , Bass/fisiologia , Clonagem Molecular , Proteínas do Ovo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Dados de Sequência Molecular , Oócitos/metabolismo , Oócitos/fisiologia , Oogênese/efeitos dos fármacos , Oogênese/genética , Filogenia , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologiaRESUMO
Cholesterol transport across the mitochondrial membrane is rate-limiting for steroidogenesis in vertebrates. Previous studies in fish have characterized expression of the steroidogenic acute regulatory protein, however the function and regulation of other genes and proteins involved in piscine cholesterol transport have not been evaluated. In the current study, mRNA sequences of the 18 kDa translocator protein (tspo; formerly peripheral benzodiazepine receptor), voltage-dependent anion channel (vdac), and diazepam binding inhibitor (dbi; also acyl-CoA binding protein) were cloned from largemouth bass. Gonadal expression was examined across reproductive stages to determine if expression is correlated with changes in steroid levels and with indicators of reproductive maturation. In testis, transcript abundance of tspo and dbi increased with reproductive maturation (6- and 23-fold maximal increase, respectively) and expression of tspo and dbi was positively correlated with reproductive stage, gonadosomatic index (GSI), and circulating levels of testosterone. Testis vdac expression was positively correlated with reproductive stage and GSI. In females, gonadal tspo and vdac expression was negatively correlated with GSI and levels of plasma testosterone and 17ß-estradiol. Ovarian dbi expression was not correlated with indicators of reproductive maturation. These studies represent the first investigation of the steroidogenic role of tspo, vdac, and dbi in fish. Findings suggest that cholesterol transport in largemouth bass testis, but not in ovary, may be transcriptionally-regulated, however further investigation will be necessary to fully elucidate the role of these genes in largemouth bass steroidogenesis.
Assuntos
Bass/sangue , Bass/metabolismo , Inibidor da Ligação a Diazepam/genética , Gônadas/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Animais , Ensaio de Imunoadsorção Enzimática , Estradiol/sangue , Feminino , Técnicas In Vitro , Filogenia , RNA Mensageiro , Receptores de GABA/genética , Reprodução/genética , Reprodução/fisiologia , Testosterona/sangueRESUMO
The method we describe in this chapter describes the synthesis and use of cDNA macroarrays for determining changes in gene expression due to environmental toxicants as well as the methods and materials that are required to do this work. While the details are for investigators working with nontraditional species for which commercial arrays are unavailable, anyone can design and use their own custom arrays using these protocols. We have intentionally left out details for statistical analysis for the arrays as the methods for doing this are still being developed and would need to be specific to the experiment being done. In all, gene macroarrays are a relatively easy way to generate large amounts of data in a short amount of time.
Assuntos
Perfilação da Expressão Gênica/métodos , Substâncias Perigosas/toxicidade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Monitoramento Ambiental/métodos , Regulação da Expressão Gênica/efeitos dos fármacosRESUMO
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) tract that leads to motor, cognitive and psychiatric impairment. Currently there is no cure for HD. A transgenic HD nonhuman primate (HD-NHP) model was developed with progressive development of clinical and pathological features similar to human HD, which suggested the potential preclinical application of the HD-NHP model. Elevated expression of miR-196a was observed in both HD-NHP and human HD brains. Cytotoxicity and apoptosis were ameliorated by the overexpression of miR-196a in HD-NHP neural progenitor cells (HD-NPCs) and differentiated neural cells (HD-NCs). The expression of apoptosis related gene was also down regulated. Mitochondrial morphology and activity were improved as indicated by mitotracker staining and the upregulation of CBP and PGC-1α in HD-NPCs overexpressing miR-196a. Here we demonstrated the amelioration of HD cellular phenotypes in HD-NPCs and HD-NCs overexpressing miR-196a. Our results also suggested the regulatory role of miR-196a in HD pathogenesis that may hold the key for understanding molecular regulation in HD and developing novel therapeutics.
Assuntos
Modelos Animais de Doenças , Doença de Huntington/patologia , MicroRNAs/fisiologia , Células-Tronco Neurais/metabolismo , Animais , Animais Geneticamente Modificados , Humanos , Mitocôndrias/metabolismo , FenótipoRESUMO
Cryopreservation is an important tool routinely used in preserving sperm for assisted reproductive technologies and for genetic preservation of unique animal models. Here we investigated the viability of fresh and frozen sperm from rhesus macaques on the basis of motility, membrane integrity, and acrosome integrity. Sperm motility was determined by visual evaluation; membrane and acrosome integrity were assessed simultaneously through triple staining with Hoechst 33342, propidium iodide, and fluorescein isothiocyanate-peanut agglutinin. We compared thawed semen that had been cryopreserved by using 2 different media with fresh semen from wildtype (WT) macaques; fresh semen from a model of Huntington disease (HD) with fresh WT semen; and fresh HD with cryopreserved-thawed HD semen. Our new freezing media (TEST EQ) preserved the acrosome better, with less net damage, than did traditional TEST (egg yolk extender containing TES and Tris) media. In addition, the percentage of membrane-damaged cells was similar in fresh HD semen (38.6%±2.9%) and WT semen (35.5%±1.9%). Membrane and acrosomal damage were not different between HD and WT sperm after cryopreservation and subsequent thawing. Furthermore, cryopreservation had similar negative effects on the motility of HD and WT sperm. These data illustrate that semen from a rhesus macaque model of HD is similarly cryotoleratant to that from WT animals.
Assuntos
Animais Geneticamente Modificados , Criopreservação/veterinária , Macaca mulatta/genética , Macaca mulatta/fisiologia , Preservação do Sêmen/veterinária , Animais , Gema de Ovo , Masculino , Motilidade dos Espermatozoides , EspermatozoidesRESUMO
Lake Apopka (FL, USA) has elevated levels of some organochlorine pesticides in its sediments and a portion of its watershed has been designated a US Environmental Protection Agency Superfund site. This study assessed reproductive endpoints in Florida largemouth bass (LMB) (Micropterus salmoides floridanus) after placement into experimental ponds adjacent to Lake Apopka. LMB collected from a clean reference site (DeLeon Springs) were stocked at two periods of time into ponds constructed in former farm fields on the north shore of the lake. LMB were stocked during early and late oogenesis to determine if there were different effects of contamination on LMB that may be attributed to their reproductive stage. LMB inhabiting the ponds for ~4months had anywhere from 2 to 800 times higher contaminant load for a number of organochlorine pesticides (e.g. p, p'-DDE, methoxychlor) compared to control animals. Gonadosomatic index and plasma vitellogenin were not different between reproductively-stage matched LMB collected at reference sites compared to those inhabiting the ponds. However, plasma 17ß-estradiol was lower in LMB inhabiting the Apopka ponds compared to ovary stage-matched LMB from the St. Johns River, a site used as a reference site. Sub-network enrichment analysis revealed that genes related to reproduction (granulosa function, oocyte development), endocrine function (steroid metabolism, hormone biosynthesis), and immune function (T cell suppression, leukocyte accumulation) were differentially expressed in the ovaries of LMB placed into the ponds. These data suggest that (1) LMB inhabiting the Apopka ponds showed disrupted reproduction and immune responses and that (2) gene expression profiles provided site-specific information by discriminating LMB from different macro-habitats.
Assuntos
Bass/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Imunidade Celular/genética , Reprodução/genética , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/farmacologia , Animais , Bass/crescimento & desenvolvimento , Biologia Computacional , Imunidade Celular/efeitos dos fármacos , Lagos , Análise em Microsséries , Reprodução/efeitos dos fármacos , Vitelogeninas/sangue , Áreas AlagadasRESUMO
Largemouth bass (Micropterus salmoides) inhabiting Lake Apopka, Florida are exposed to high levels of persistent organochlorine pesticides (OCPs) and dietary uptake is a significant route of exposure for these apex predators. The objectives of this study were to determine the dietary effects of two organochlorine pesticides (p, p'-dichlorodiphenyldichloroethylene; p, p' DDE and methoxychlor; MXC) on the reproductive axis of largemouth bass. Reproductive bass (late vitellogenesis) were fed one of the following diets: control pellets, 125ppm p, p'-DDE, or 10ppm MXC (mg/kg) for 84days. Due to the fact that both p,p' DDE and MXC have anti-androgenic properties, the anti-androgenic pharmaceutical flutamide was fed to a fourth group of largemouth bass (750ppm). Following a 3 month exposure, fish incorporated p,p' DDE and MXC into both muscle and ovary tissue, with the ovary incorporating 3 times more organochlorine pesticides compared to muscle. Endpoints assessed were those related to reproduction due to previous studies demonstrating that these pesticides impact the reproductive axis and we hypothesized that a dietary exposure would result in impaired reproduction. However, oocyte distribution, gonadosomatic index, plasma vitellogenin, and plasma sex steroids (17ß-estradiol, E2 and testosterone, T) were not different between control animals and contaminant-fed largemouth bass. Moreover, neither p, p' DDE nor MXC affected E2 or T production in ex vivo oocyte cultures from chemical-fed largemouth bass. However, both pesticides did interfere with the normal upregulation of androgen receptor that is observed in response to human chorionic gonadotropin in ex vivo cultures, an observation that may be related to their anti-androgenic properties. Transcriptomics profiling in the ovary revealed that gene networks related to cell processes such as leukocyte cell adhesion, ossification, platelet function and inhibition, xenobiotic metabolism, fibrinolysis, and thermoregulation were altered by p, p' DDE, MXC, and flutamide. Interestingly, immune-related gene networks were suppressed by all three chemicals. The data suggest that p, p' DDE and flutamide affected more genes in common with each other than either chemical with MXC, consistent with studies suggesting that p, p' DDE is a more potent anti-androgen than MXC. These data demonstrate that reproductive health was not affected by these specific dietary treatments, but rather the immune system, which may be a significant target of organochlorine pesticides. The interaction between the reproductive and immune systems should be considered in future studies on these legacy and persistent pesticides.
Assuntos
Bass/imunologia , Diclorodifenil Dicloroetileno/toxicidade , Redes Reguladoras de Genes/efeitos dos fármacos , Metoxicloro/toxicidade , Ovário/efeitos dos fármacos , Praguicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bass/genética , Carga Corporal (Radioterapia) , Diclorodifenil Dicloroetileno/metabolismo , Dieta , Feminino , Sistema Imunitário/efeitos dos fármacos , Metoxicloro/metabolismo , Ovário/imunologia , Praguicidas/metabolismo , Reprodução/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Transcriptoma/imunologia , Poluentes Químicos da Água/metabolismoRESUMO
Transgenic nonhuman primate models are an increasingly popular model for neurologic and neurodegenerative disease because their brain functions and neural anatomies closely resemble those of humans. Transgenic Huntington's disease monkeys (HD monkeys) developed clinical features similar to those seen in HD patients, making the monkeys suitable for a preclinical study of HD. However, until HD monkey colonies can be readily expanded, their use in preclinical studies will be limited. In the present study, we confirmed germline transmission of the mutant huntingtin (mHTT) transgene in both embryonic stem cells generated from three male HD monkey founders (F0) and in second-generation offspring (F1) produced via artificial insemination by using intrauterine insemination technique. A total of five offspring were produced from 15 females that were inseminated by intrauterine insemination using semen collected from the three HD founders (5 of 15, 33%). Thus far, sperm collected from the HD founder (rHD8) has led to two F1 transgenic HD monkeys with germline transmission rate at 100% (2 of 2). mHTT expression was confirmed by quantitative real-time polymerase chain reaction using skin fibroblasts from the F1 HD monkeys and induced pluripotent stem cells established from one of the F1 HD monkeys (rHD8-2). Here, we report the stable germline transmission and expression of the mHTT transgene in HD monkeys, which suggest possible expansion of HD monkey colonies for preclinical and biomedical research studies.
Assuntos
Animais Geneticamente Modificados , Doença de Huntington/genética , Macaca mulatta , Espermatozoides , Animais , Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias , Feminino , Genótipo , Células Germinativas , Proteína Huntingtina , Células-Tronco Pluripotentes Induzidas , Inseminação Artificial/métodos , Inseminação Artificial/veterinária , Masculino , Proteínas do Tecido Nervoso/genética , Neurônios , Células-Tronco Pluripotentes , Gravidez , Transgenes/genéticaRESUMO
One of the roadblocks to developing effective therapeutics for Huntington disease (HD) is the lack of animal models that develop progressive clinical traits comparable to those seen in patients. Here we report a longitudinal study that encompasses cognitive and motor assessment, and neuroimaging of a group of transgenic HD and control monkeys from infancy to adulthood. Along with progressive cognitive and motor impairment, neuroimaging revealed a progressive reduction in striatal volume. Magnetic resonance spectroscopy at 48 months of age revealed a decrease of N-acetylaspartate (NAA), further suggesting neuronal damage/loss in the striatum. Postmortem neuropathological analyses revealed significant neuronal loss in the striatum. Our results indicate that HD monkeys share similar disease patterns with HD patients, making them potentially suitable as a preclinical HD animal model.
Assuntos
Cognição , Corpo Estriado/patologia , Doença de Huntington/fisiopatologia , Destreza Motora , Animais , Corpo Estriado/crescimento & desenvolvimento , Modelos Animais de Doenças , Doença de Huntington/genética , Doença de Huntington/patologia , Macaca mulatta , Masculino , TransgenesRESUMO
BACKGROUND: Huntington's Disease (HD) is a progressive neurodegenerative disorder with a single causal mutation in the Huntingtin (HTT) gene. MicroRNAs (miRNAs) have recently been implicated as epigenetic regulators of neurological disorders, however, their role in HD pathogenesis is not well defined. Here we study transgenic HD monkeys (HD monkeys) to examine miRNA dysregulation in a primate model of the disease. RESULTS: In this report, 11 miRNAs were found to be significantly associated (P value < 0.05) with HD in the frontal cortex of the HD monkeys. We further focused on one of those candidates, miR-128a, due to the corresponding disruption in humans and mice with HD as well as its intriguing lists of gene targets. miR-128a was downregulated in our HD monkey model by the time of birth. We then confirmed that miR-128a was also downregulated in the brains of pre-symptomatic and post-symptomatic HD patients. Additionally, our studies confirmed a panel of canonical HD signaling genes regulated by miR-128a, including HTT and Huntingtin Interaction Protein 1 (HIP1). CONCLUSION: Our studies found that miR-128a may play a critical role in HD and could be a viable candidate as a therapeutic or biomarker of the disease.
Assuntos
Regulação da Expressão Gênica , Haplorrinos/genética , Doença de Huntington/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Animais , Animais Geneticamente Modificados , Caspase 3/metabolismo , Ativação Enzimática , Lobo Frontal/enzimologia , Lobo Frontal/patologia , Perfilação da Expressão Gênica , Técnicas de Genotipagem , Proteína Glial Fibrilar Ácida/metabolismo , Células HEK293 , Humanos , Camundongos , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Estrutura Quaternária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genéticaRESUMO
Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20µg/kg of cadmium chloride (mean exposure level - 2.6µg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction.
Assuntos
Bass/genética , Bass/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Cádmio/metabolismo , Reparo do DNA/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Análise Serial de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Poluentes Químicos da Água/metabolismoRESUMO
17Alpha-ethinylestradiol (EE2), used for birth control in humans, is a potent estrogen that is found in wastewater at low concentrations (ng/l). EE2 has the ability to interfere with the endocrine system of fish, affecting reproduction which can result in population level effects. The objective of this study was to determine if dietary exposure to EE2 would alter gene expression patterns and key pathways in the liver and ovary and whether these could be associated with reproductive endpoints in female largemouth bass during egg development. Female LMB received 70ng EE2/g feed (administered at 1% of body weight) for 60 days. EE2 dietary exposure significantly reduced plasma vitellogenin concentrations by 70%. Hepatosomatic and gonadosomatic indices were also decreased with EE2 feeding by 38.5% and 40%, respectively. Transcriptomic profiling revealed that there were more changes in steady state mRNA levels in the liver compared to the ovary. Genes associated with reproduction were differentially expressed, such as vitellogenin in the liver and aromatase in the gonad. In addition, a set of genes related with oxidative stress (e.g. glutathione reductase and glutathione peroxidase) were identified as altered in the liver and genes associated with the immune system (e.g. complement component 1, and macrophage-inducible C-type lectin) were altered in the gonad. In a follow-up study with 0.2ng EE2/g feed for 60 days, similar phenotypic and gene expression changes were observed that support these findings with the higher concentrations. This study provides new insights into how dietary exposure to EE2 interferes with endocrine signaling pathways in female LMB during a critical period of reproductive oogenesis.
Assuntos
Bass , Dieta , Etinilestradiol/toxicidade , Transdução de Sinais , Poluentes Químicos da Água/toxicidade , Animais , Aromatase/genética , Bass/genética , Bass/metabolismo , Sistema Endócrino/efeitos dos fármacos , Feminino , Seguimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ovário/efeitos dos fármacos , Vitelogeninas/sangue , Vitelogeninas/genéticaRESUMO
BACKGROUND: Oocyte maturation in fish involves numerous cell signaling cascades that are activated or inhibited during specific stages of oocyte development. The objectives of this study were to characterize molecular pathways and temporal gene expression patterns throughout a complete breeding cycle in wild female largemouth bass to improve understanding of the molecular sequence of events underlying oocyte maturation. METHODS: Transcriptomic analysis was performed on eight morphologically diverse stages of the ovary, including primary and secondary stages of oocyte growth, ovulation, and atresia. Ovary histology, plasma vitellogenin, 17ß-estradiol, and testosterone were also measured to correlate with gene networks. RESULTS: Global expression patterns revealed dramatic differences across ovarian development, with 552 and 2070 genes being differentially expressed during both ovulation and atresia respectively. Gene set enrichment analysis (GSEA) revealed that early primary stages of oocyte growth involved increases in expression of genes involved in pathways of B-cell and T-cell receptor-mediated signaling cascades and fibronectin regulation. These pathways as well as pathways that included adrenergic receptor signaling, sphingolipid metabolism and natural killer cell activation were down-regulated at ovulation. At atresia, down-regulated pathways included gap junction and actin cytoskeleton regulation, gonadotrope and mast cell activation, and vasopressin receptor signaling and up-regulated pathways included oxidative phosphorylation and reactive oxygen species metabolism. Expression targets for luteinizing hormone signaling were low during vitellogenesis but increased 150% at ovulation. Other networks found to play a significant role in oocyte maturation included those with genes regulated by members of the TGF-beta superfamily (activins, inhibins, bone morphogenic protein 7 and growth differentiation factor 9), neuregulin 1, retinoid X receptor, and nerve growth factor family. CONCLUSIONS: This study offers novel insight into the gene networks underlying vitellogenesis, ovulation and atresia and generates new hypotheses about the cellular pathways regulating oocyte maturation.
Assuntos
Bass/genética , Bass/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Oogênese/genética , Ovário/metabolismo , Animais , Análise por Conglomerados , Biologia Computacional , Estrogênios/metabolismo , Feminino , Perfilação da Expressão Gênica , Integrina alfa5beta1/metabolismo , Masculino , Ovário/anatomia & histologia , Ovário/citologia , Reprodução/genética , Transdução de Sinais , Vitelogeninas/metabolismo , beta Catenina/metabolismoRESUMO
The steroidogenic acute regulatory (StAR) protein mediates the rate-limiting step of mitochondrial transport of cholesterol for steroid biosynthesis. To investigate the regulation of this protein in lower vertebrates, we cloned the StAR coding region from large-mouth bass for analysis. Induction of the mRNA corresponded with increasing levels of plasma sex steroids in vivo. Cultures of largemouth bass ovarian follicles were exposed to dibutyryl cAMP (dbcAMP), a potent signaling molecule for steroidogenesis. StAR mRNA expression was significantly up-regulated by dbcAMP signaling, suggesting that the 5' regulatory region of the gene is functionally conserved. To further analyze its transcriptional regulation, a 2.9-kb portion of the promoter was cloned and transfected into Y-1 cells, a steroidogenic mouse adrenocortical cell line. The promoter activity was induced in a dose-responsive manner upon stimulation with dbcAMP; however, deletion of 1 kb from the 5' end of the promoter segment significantly diminished the transcriptional activation. A putative retinoic acid-related receptor-alpha/rev-erb alpha element was identified between the -1.86- and -2.9-kb region and mutated to assess its potential role in dbcAMP regulation of the promoter. Mutation of the rev-erb alpha element significantly impeded dbcAMP-induced activation. Chromatin immunoprecipitation and EMSA results revealed rev-erb alpha and retinoic acid-related receptor-alpha enrichment at the site under basal and dbcAMP-induced conditions, respectively. These results implicate important roles for these proteins previously uncharacterized for the StAR promoter. Altogether these data suggest novel regulatory mechanisms for dbcAMP up-regulation of StAR transcription in the distal part of the largemouth bass promoter.