Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612858

RESUMO

Thymic stromal lymphopoietin (TSLP), mainly expressed by epithelial cells, plays a central role in asthma. In humans, TSLP exists in two variants: the long form TSLP (lfTSLP) and a shorter TSLP isoform (sfTSLP). Macrophages (HLMs) and mast cells (HLMCs) are in close proximity in the human lung and play key roles in asthma. We evaluated the early proteolytic effects of tryptase and chymase released by HLMCs on TSLP by mass spectrometry. We also investigated whether TSLP and its fragments generated by these enzymes induce angiogenic factor release from HLMs. Mass spectrometry (MS) allowed the identification of TSLP cleavage sites caused by tryptase and chymase. Recombinant human TSLP treated with recombinant tryptase showed the production of 1-97 and 98-132 fragments. Recombinant chymase treatment of TSLP generated two peptides, 1-36 and 37-132. lfTSLP induced the release of VEGF-A, the most potent angiogenic factor, from HLMs. By contrast, the four TSLP fragments generated by tryptase and chymase failed to activate HLMs. Long-term TSLP incubation with furin generated two peptides devoid of activating property on HLMs. These results unveil an intricate interplay between mast cell-derived proteases and TSLP. These findings have potential relevance in understanding novel aspects of asthma pathobiology.


Assuntos
Asma , Linfopoietina do Estroma do Timo , Humanos , Triptases , Quimases , Indutores da Angiogênese , Serina Proteases , Citocinas
2.
EMBO J ; 38(19): e101704, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31429971

RESUMO

The TRAnsport Protein Particle (TRAPP) complex controls multiple membrane trafficking steps and is strategically positioned to mediate cell adaptation to diverse environmental conditions, including acute stress. We have identified the TRAPP complex as a component of a branch of the integrated stress response that impinges on the early secretory pathway. The TRAPP complex associates with and drives the recruitment of the COPII coat to stress granules (SGs) leading to vesiculation of the Golgi complex and arrest of ER export. The relocation of the TRAPP complex and COPII to SGs only occurs in cycling cells and is CDK1/2-dependent, being driven by the interaction of TRAPP with hnRNPK, a CDK substrate that associates with SGs when phosphorylated. In addition, CDK1/2 inhibition impairs TRAPP complex/COPII relocation to SGs while stabilizing them at ER exit sites. Importantly, the TRAPP complex controls the maturation of SGs. SGs that assemble in TRAPP-depleted cells are smaller and are no longer able to recruit RACK1 and Raptor, two TRAPP-interactive signaling proteins, sensitizing cells to stress-induced apoptosis.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Estresse Fisiológico , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Quinase 2 Dependente de Ciclina/metabolismo , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Ratos
3.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361777

RESUMO

The H Ferritin subunit (FTH1), as well as regulating the homeostasis of intracellular iron, is involved in complex pathways that might promote or inhibit carcinogenesis. This function may be mediated by its ability to interact with different molecules. To gain insight into the FTH1 interacting molecules, we analyzed its interactome in HEK293T cells. Fifty-one proteins have been identified, and among them, we focused our attention on a member of the peroxiredoxin family (PRDX6), an antioxidant enzyme that plays an important role in cell proliferation and in malignancy development. The FTH1/PRDX6 interaction was further supported by co-immunoprecipitation, in HEK293T and H460 cell lines and by means of computational methods. Next, we demonstrated that FTH1 could inhibit PRDX6-mediated proliferation and migration. Then, the results so far obtained suggested that the interaction between FTH1/PRDX6 in cancer cells might alter cell proliferation and migration, leading to a less invasive phenotype.


Assuntos
Apoferritinas , Peroxirredoxina VI , Humanos , Apoferritinas/genética , Peroxirredoxina VI/metabolismo , Células HEK293 , Proliferação de Células , Ferro/metabolismo
4.
Clin Chem Lab Med ; 59(10): 1670-1679, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-33887814

RESUMO

OBJECTIVES: Artifactually altered glycated hemoglobin (HbA1c) concentrations are frequently linked to hemoglobin (Hb) variants. Their expression and detection require in-depth analysis. METHODS: Cation exchange high performance liquid chromatography (HPLC) (Bio-Rad Variant™ II; Trinity Biotech Premier Hb9210 Resolution), capillary electrophoresis (CE) (Sebia Capillarys 2 Flex Piercing) and mass spectrometry (MS) (Waters) were used for variant detection; Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA) and next generation sequencing (NGS) were used for DNA analysis; HbA1c was measured with cation exchange HPLC (Bio-Rad Variant™ II; Arkray Adams HA-8180V; Tosoh HLC-723 G7), CE (Sebia Capillarys 2 Flex Piercing), boronate affinity HPLC (Trinity Biotech Hb9210 Premier), immunoassay (Cobas c501 Tina-quant HbA1c Gen. 3; Nihon Kohden CHM-4100 Celltac chemi HbA1c HA-411V) and enzymatic assay (Abbott Architect c 8000 HbA1c). RESULTS: Hb Yamagata [ß132(H10)Lys→Asn; (HBB: c.399A>T)] was identified in the proband by MS after the observation of an abnormal peak in HPLC and CE. A mosaic expression of this variant was detected by NGS (mutant: 8%; wild type: 92%), after negative results in Sanger sequencing. Hb Yamagata interfered with HbA1c measurements by cation exchange HPLC and CE whereas immuno and enzymatic assay values showed good agreement with boronate affinity HPLC measurement. CONCLUSIONS: A mosaicism of Hb Yamagata was found in a patient with altered HbA1c values. This rare gene variant was detected only by advanced technologies as MS and NGS. The variant interfered with common HbA1c determination methods.


Assuntos
Hemoglobinas Anormais , Cromatografia Líquida de Alta Pressão , Eletroforese Capilar , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/genética , Hemoglobinas Anormais/análise , Hemoglobinas Anormais/genética , Humanos
5.
Nucleic Acids Res ; 47(1): 221-236, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30462294

RESUMO

8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is one of the major DNA modifications and a potent pre-mutagenic lesion prone to mispair with 2'-deoxyadenosine (dA). Several thousand residues of 8-oxodG are constitutively generated in the genome of mammalian cells, but their genomic distribution has not yet been fully characterized. Here, by using OxiDIP-Seq, a highly sensitive methodology that uses immuno-precipitation with efficient anti-8-oxodG antibodies combined with high-throughput sequencing, we report the genome-wide distribution of 8-oxodG in human non-tumorigenic epithelial breast cells (MCF10A), and mouse embryonic fibroblasts (MEFs). OxiDIP-Seq revealed sites of 8-oxodG accumulation overlapping with γH2AX ChIP-Seq signals within the gene body of transcribed long genes, particularly at the DNA replication origins contained therein. We propose that the presence of persistent single-stranded DNA, as a consequence of transcription-replication clashes at these sites, determines local vulnerability to DNA oxidation and/or its slow repair. This oxidatively-generated damage, likely in combination with other kinds of lesion, might contribute to the formation of DNA double strand breaks and activation of DNA damage response.


Assuntos
Dano ao DNA/genética , Replicação do DNA/genética , Desoxiguanosina/análogos & derivados , Histonas/genética , 8-Hidroxi-2'-Desoxiguanosina , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , DNA/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Desoxiadenosinas/genética , Desoxiguanosina/genética , Fibroblastos/metabolismo , Genoma/genética , Humanos , Camundongos , Oxirredução , Origem de Replicação/genética
6.
Cell Commun Signal ; 17(1): 20, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30823936

RESUMO

BACKGROUND: Shp1, a tyrosine-phosphatase-1 containing the Src-homology 2 (SH2) domain, is involved in inflammatory and immune reactions, where it regulates diverse signalling pathways, usually by limiting cell responses through dephosphorylation of target molecules. Moreover, Shp1 regulates actin dynamics. One Shp1 target is Src, which controls many cellular functions including actin dynamics. Src has been previously shown to be activated by a signalling cascade initiated by the cytosolic-phospholipase A2 (cPLA2) metabolite glycerophosphoinositol 4-phosphate (GroPIns4P), which enhances actin polymerisation and motility. While the signalling cascade downstream Src has been fully defined, the mechanism by which GroPIns4P activates Src remains unknown. METHODS: Affinity chromatography, mass spectrometry and co-immunoprecipitation studies were employed to identify the GroPIns4P-interactors; among these Shp1 was selected for further analysis. The specific Shp1 residues interacting with GroPIns4P were revealed by NMR and validated by site-directed mutagenesis and biophysical methods such as circular dichroism, isothermal calorimetry, fluorescence spectroscopy, surface plasmon resonance and computational modelling. Morphological and motility assays were performed in NIH3T3 fibroblasts. RESULTS: We find that Shp1 is the direct cellular target of GroPIns4P. GroPIns4P directly binds to the Shp1-SH2 domain region (with the crucial residues being Ser 118, Arg 138 and Ser 140) and thereby promotes the association between Shp1 and Src, and the dephosphorylation of the Src-inhibitory phosphotyrosine in position 530, resulting in Src activation. As a consequence, fibroblast cells exposed to GroPIns4P show significantly enhanced wound healing capability, indicating that GroPIns4P has a stimulatory role to activate fibroblast migration. GroPIns4P is produced by cPLA2 upon stimulation by diverse receptors, including the EGF receptor. Indeed, endogenously-produced GroPIns4P was shown to mediate the EGF-induced cell motility. CONCLUSIONS: This study identifies a so-far undescribed mechanism of Shp1/Src modulation that promotes cell motility and that is dependent on the cPLA2 metabolite GroPIns4P. We show that GroPIns4P is required for EGF-induced fibroblast migration and that it is part of a cPLA2/GroPIns4P/Shp1/Src cascade that might have broad implications for studies of immune-inflammatory response and cancer.


Assuntos
Movimento Celular , Receptores ErbB/metabolismo , Fosfatos de Inositol/metabolismo , Fosfolipases A2/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Animais , Sítios de Ligação , Fator de Crescimento Epidérmico/farmacologia , Camundongos , Células NIH 3T3 , Fosforilação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 6/química , Células RAW 264.7 , Cicatrização , Domínios de Homologia de src
7.
Biol Cell ; 110(7): 147-158, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29704455

RESUMO

BACKGROUND INFORMATION: Up-regulated Gene clone 7 (URG7) is an ER resident protein, whose expression is up-regulated in the presence of hepatitis B virus X antigen (HBxAg) during HBV infection. In virus-infected hepatocytes, URG7 shows an anti-apoptotic activity due to the PI3K/AKT signalling activation, does not seem to have tumorigenic properties, but it appears to promote the development and progression of fibrosis. However, the molecular mechanisms underlying URG7 activity remain largely unknown. RESULTS: To shed light on URG7 activity, we first analysed its interactome in HepG2 transfected cells: this analysis suggests that URG7 could have a role in affecting protein synthesis, folding and promoting proteins degradation. Moreover, keeping into account its subcellular localisation in the ER and that several viral infections give rise to ER stress, a panel of experiments was performed to evaluate a putative role of URG7 in ER stress. Our main results demonstrate that in ER-stressed cells URG7 is able to modulate the expression of Unfolded Protein Response (UPR) markers towards survival outcomes, up-regulating GRP78 protein and down-regulating the pro-apoptotic protein CHOP. Furthermore, URG7 reduces the ER stress by decreasing the amount of unfolded proteins, by increasing both the total protein ubiquitination and the AKT activation and reducing Caspase 3 activation. CONCLUSIONS: All together these data suggest that URG7 plays a pivotal role as a reliever of ER stress-induced apoptosis. SIGNIFICANCE: This is the first characterisation of URG7 activity under ER stress conditions. The results presented here will help to hypothesise new strategies to counteract the antiapoptotic activity of URG7 in the context of the viral infection.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Estresse do Retículo Endoplasmático , Neoplasias Hepáticas/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fator de Transcrição CHOP/metabolismo , Carcinoma Hepatocelular/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteólise , Proteoma/análise , Proteômica/métodos , Células Tumorais Cultivadas , Ubiquitinação , Resposta a Proteínas não Dobradas
8.
Nature ; 501(7465): 116-20, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23913272

RESUMO

Newly synthesized proteins and lipids are transported across the Golgi complex via different mechanisms whose respective roles are not completely clear. We previously identified a non-vesicular intra-Golgi transport pathway for glucosylceramide (GlcCer)--the common precursor of the different series of glycosphingolipids-that is operated by the cytosolic GlcCer-transfer protein FAPP2 (also known as PLEKHA8) (ref. 1). However, the molecular determinants of the FAPP2-mediated transfer of GlcCer from the cis-Golgi to the trans-Golgi network, as well as the physiological relevance of maintaining two parallel transport pathways of GlcCer--vesicular and non-vesicular--through the Golgi, remain poorly defined. Here, using mouse and cell models, we clarify the molecular mechanisms underlying the intra-Golgi vectorial transfer of GlcCer by FAPP2 and show that GlcCer is channelled by vesicular and non-vesicular transport to two topologically distinct glycosylation tracks in the Golgi cisternae and the trans-Golgi network, respectively. Our results indicate that the transport modality across the Golgi complex is a key determinant for the glycosylation pattern of a cargo and establish a new paradigm for the branching of the glycosphingolipid synthetic pathway.


Assuntos
Glucosilceramidas/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Globosídeos/biossíntese , Globosídeos/química , Globosídeos/metabolismo , Glucosilceramidas/química , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/química , Glicoesfingolipídeos/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos de Fosfatidilinositol/metabolismo , Rede trans-Golgi/metabolismo
9.
Int J Mol Sci ; 20(21)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683668

RESUMO

Many details of oxidative folding of proteins remain obscure, in particular, the role of oxidized glutathione (GSSG). This study reveals some unknown aspects. When a reduced ribonuclease A refolds in the presence of GSSG, most of its eight cysteines accomplish a very fast glutathionylation. In particular, one single cysteine, identified as Cys95 by mass spectrometry, displays 3600 times higher reactivity when compared with an unperturbed protein cysteine. Furthermore, the other five cysteines show 40-50 times higher reactivity toward GSSG. This phenomenon is partially due to a low pKa value of most of these cysteines (average pKa = 7.9), but the occurrence of a reversible GSSG-ribonuclease complex (KD = 0.12 mM) is reasonably responsible for the extraordinary hyper-reactivity of Cys95. Neither hyper-reactivity nor some protein-disulfide complexes have been found by reacting a reduced ribonuclease with other natural disulfides i.e., cystine, cystamine, and homocystine. Hyper-reactivity of all cysteines was observed toward 5,5'-dithiobis-(2-nitrobenzoic acid). Given that GSSG is present in high concentrations in the endoplasmic reticulum, this property may shed light on the early step of its oxidative folding. The ultra-rapid glutathionylation of cysteines, only devoted to form disulfides, is a novel property of the molten globule status of the ribonuclease.


Assuntos
Cisteína/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Ribonucleases/metabolismo , Animais , Bovinos , Dissulfetos/metabolismo , Ácido Ditionitrobenzoico/metabolismo , Concentração de Íons de Hidrogênio , Oxirredução , Estresse Oxidativo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Ribonucleases/química , Compostos de Sulfidrila/metabolismo , Espectrometria de Massas em Tandem
11.
Anal Chem ; 90(9): 5627-5636, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29579379

RESUMO

Knowledge of the nature of biofluids at a crime scene is just as important as DNA test to link the nature of the biofluid, the criminal act, and the dynamics of the crime. Identification of methods currently used for each biological fluid (blood, semen, saliva, urine) suffer from several limitations including instability of assayed biomolecules, and low selectivity and specificity; as an example of the latter issue, it is not possible to discriminate between alpha-amylase 1 (present in saliva) and alpha-amylase 2 (present in semen and vaginal secretion. In this context, the aim of the work has been to provide a predictive protein signature characteristic of each biofluid by the recognition of specific peptides unique for each protein in a single analysis. A panel of four protein biomarkers for blood, four for saliva, five for semen, and two for urine has been monitored has been monitored by using a single multiple reaction monitoring (MRM)-based method targeting concomitantly 46 different peptides. Then, The optimized method allows four biological matrices to be identified when present on their own or in 50:50 mixture with another biofluid. Finally, a valid strategy combining both DNA analysis and liquid chromatographic-tandem mass spectrometric multiple reaction monitoring (LC-MS-MRM) identification of biofluids on the same sample has been demonstrated to be particularly effective in forensic investigation of real trace evidence collected at a crime scene.


Assuntos
Líquidos Corporais/química , Crime , Ciências Forenses/métodos , Espectrometria de Massas em Tandem/métodos , Apolipoproteínas/análise , Biomarcadores/análise , Glicoproteínas/análise , Humanos , Cadeias kappa de Imunoglobulina , Albumina Sérica Humana/análise , alfa 1-Antitripsina/análise
12.
Pharmacol Res ; 128: 80-87, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28986132

RESUMO

Inflammation is considered an enabling feature of cancer. Besides the persistence of inflammatory stimuli, also defective mechanisms of resolution can lead to chronic inflammation. Inflammation resolution is an active process controlled by lipidic specialized pro-resolving mediators (SPMs), derived from ω-3 or ω-6 essential polyunsaturated fatty acids (PUFA) through the activity of lipoxygenases (ALOX5 and 15). Thus, a lack or defect in resolution mechanisms may affect cancer development and progression by prolonging inflammation. Components of pro-resolving pathways (PUFA, enzymes, or SPMs) have been reported to modulate various cancer features by affecting both cancer cells and cancer-associated stroma. Here, we will review the most important mechanisms by which SPMs, ω-3/6 PUFA, and ALOXs affect cancer biology, paying particular attention to their role in the inhibition of inflammation and angiogenesis, two of the most important hallmarks of cancer. The collection of these results may suggest novel perspectives in cancer management based on the modulation of lipid metabolism and the production of SPMs.


Assuntos
Metabolismo dos Lipídeos , Neoplasias/metabolismo , Animais , Araquidonato 5-Lipoxigenase/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Humanos , Mediadores da Inflamação/metabolismo
13.
Brain ; 140(4): 940-952, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334956

RESUMO

PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as responsible. Our functional assays of disease-associated variant alleles revealed impaired microtubule polymerization, as well as cell migration and proliferation properties, of mutant PRUNE. Additionally, our studies also highlight a potential new role for PRUNE during microtubule polymerization, which is essential for the cytoskeletal rearrangements that occur during cellular division and proliferation. Together these studies define PRUNE as a molecule fundamental for normal human cortical development and define cellular and clinical consequences associated with PRUNE mutation.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas de Transporte/genética , Deficiências do Desenvolvimento/genética , Microcefalia/genética , Adolescente , Diferenciação Celular/genética , Movimento Celular/genética , Córtex Cerebral/crescimento & desenvolvimento , Criança , Pré-Escolar , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Feminino , Genes Recessivos , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Humanos , Lactente , Masculino , Microtúbulos/genética , Microtúbulos/ultraestrutura , Mutação/genética , Linhagem , Monoéster Fosfórico Hidrolases , Adulto Jovem
14.
Biochim Biophys Acta ; 1860(2): 434-44, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26515634

RESUMO

Amyloidoses are devastating diseases characterized by accumulation of misfolded proteins which aggregate in fibrils. Specific gene mutations in Apolipoprotein A I (ApoAI) are associated with systemic amyloidoses. Little is known on the effect of mutations on ApoAI structure and amyloid properties. Here we performed a physico-chemical characterization of L75P- and L174S-amyloidogenic ApoAI (AApoAI) variants to shed light on the effects of two single point mutations on protein stability, proteolytic susceptibility and aggregation propensity. Both variants are destabilized in their N-terminal region and generate fibrils with different morphological features. L75P-AApoAI is significantly altered in its conformation and compactness, whereas a more flexible and pronounced aggregation-competent state is associated to L174S-AApoAI. These observations point out how single point mutations in ApoAI gene evocate differences in the physico-chemical and conformational behavior of the corresponding protein variants, with the common feature of diverting ApoAI from its natural role towards a pathogenic pathway.


Assuntos
Amiloidose Familiar/genética , Apolipoproteína A-I/genética , Mutação Puntual , Apolipoproteína A-I/química , Humanos , Simulação de Dinâmica Molecular , Agregados Proteicos , Conformação Proteica , Estrutura Secundária de Proteína
15.
Hepatology ; 63(6): 1842-59, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26660341

RESUMO

UNLABELLED: Wilson disease (WD) is an autosomal recessive disorder that is caused by the toxic accumulation of copper (Cu) in the liver. The ATP7B gene, which is mutated in WD, encodes a multitransmembrane domain adenosine triphosphatase that traffics from the trans-Golgi network to the canalicular area of hepatocytes, where it facilitates excretion of excess Cu into the bile. Several ATP7B mutations, including H1069Q and R778L that are two of the most frequent variants, result in protein products, which, although still functional, remain in the endoplasmic reticulum. Thus, they fail to reach Cu excretion sites, resulting in the toxic buildup of Cu in the liver of WD patients. Therefore, correcting the location of these mutants by leading them to the appropriate functional sites in the cell should restore Cu excretion and would be beneficial to help large cohorts of WD patients. However, molecular targets for correction of endoplasmic reticulum-retained ATP7B mutants remain elusive. Here, we show that expression of the most frequent ATP7B mutant, H1069Q, activates p38 and c-Jun N-terminal kinase signaling pathways, which favor the rapid degradation of the mutant. Suppression of these pathways with RNA interference or specific chemical inhibitors results in the substantial rescue of ATP7B(H1069Q) (as well as that of several other WD-causing mutants) from the endoplasmic reticulum to the trans-Golgi network compartment, in recovery of its Cu-dependent trafficking, and in reduction of intracellular Cu levels. CONCLUSION: Our findings indicate p38 and c-Jun N-terminal kinase as intriguing targets for correction of WD-causing mutants and, hence, as potential candidates, which could be evaluated for the development of novel therapeutic strategies to combat WD. (Hepatology 2016;63:1842-1859).


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Transporte de Cátions/genética , Degeneração Hepatolenticular/genética , Sistema de Sinalização das MAP Quinases , Cobre/metabolismo , ATPases Transportadoras de Cobre , Células HeLa , Células Hep G2 , Degeneração Hepatolenticular/metabolismo , Humanos , Fígado/metabolismo , Mutação , Via Secretória
16.
Biochem J ; 473(19): 3205-19, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27486258

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated by the phosphorylation of tyrosine 705 in response to many cytokines and growth factors. Recently, the roles for unphosphorylated STAT3 (U-STAT3) have been described in response to cytokine stimulation, in cancers, and in the maintenance of heterochromatin stability. It has been reported that U-STAT3 dimerizes, shuttles between the cytoplasm and nucleus, and binds to DNA, thereby driving genes transcription. Although many reports describe the active role of U-STAT3 in oncogenesis in addition to phosphorylated STAT3, the U-STAT3 functional pathway remains elusive.In this report, we describe the molecular mechanism of U-STAT3 dimerization, and we identify the presence of two intermolecular disulfide bridges between Cys367 and Cys542 and Cys418 and Cys426, respectively. Recently, we reported that the same cysteines contribute to the redox regulation of STAT3 signaling pathway both in vitro and in vivo The presence of these disulfides is here demonstrated to largely contribute to the structure and the stability of U-STAT3 dimer as the dimeric form rapidly dissociates upon reduction in the S-S bonds. In particular, the Cys367-Cys542 disulfide bridge is shown to be critical for U-STAT3 DNA-binding activity. Mutation of the two Cys residues completely abolishes the DNA-binding capability of U-STAT3. Spectroscopic investigations confirm that the noncovalent interactions are sufficient for proper folding and dimer formation, but that the interchain disulfide bonds are crucial to preserve the functional dimer. Finally, we propose a reaction scheme of U-STAT3 dimerization with a first common step followed by stabilization through the formation of interchain disulfide bonds.


Assuntos
Dissulfetos/metabolismo , Fator de Transcrição STAT3/metabolismo , Cromatografia em Gel , Dimerização , Dissulfetos/química , Espectrometria de Massas , Fosforilação , Conformação Proteica , Fator de Transcrição STAT3/química , Ressonância de Plasmônio de Superfície , Tirosina/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(4): 1539-44, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474780

RESUMO

The Ser52Pro variant of transthyretin (TTR) produces aggressive, highly penetrant, autosomal-dominant systemic amyloidosis in persons heterozygous for the causative mutation. Together with a minor quantity of full-length wild-type and variant TTR, the main component of the ex vivo fibrils was the residue 49-127 fragment of the TTR variant, the portion of the TTR sequence that previously has been reported to be the principal constituent of type A, cardiac amyloid fibrils formed from wild-type TTR and other TTR variants [Bergstrom J, et al. (2005) J Pathol 206(2):224-232]. This specific truncation of Ser52Pro TTR was generated readily in vitro by limited proteolysis. In physiological conditions and under agitation the residue 49-127 proteolytic fragment rapidly and completely self-aggregates into typical amyloid fibrils. The remarkable susceptibility to such cleavage is likely caused by localized destabilization of the ß-turn linking strands C and D caused by loss of the wild-type hydrogen-bonding network between the side chains of residues Ser52, Glu54, Ser50, and a water molecule, as revealed by the high-resolution crystallographic structure of Ser52Pro TTR. We thus provide a structural basis for the recently hypothesized, crucial pathogenic role of proteolytic cleavage in TTR amyloid fibrillogenesis. Binding of the natural ligands thyroxine or retinol-binding protein (RBP) by Ser52Pro variant TTR stabilizes the native tetrameric assembly, but neither protected the variant from proteolysis. However, binding of RBP, but not thyroxine, inhibited subsequent fibrillogenesis.


Assuntos
Amiloide/metabolismo , Pré-Albumina/metabolismo , Prolina/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Amiloidose/genética , Amiloidose/patologia , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Conformação Molecular , Dados de Sequência Molecular , Fenótipo , Pré-Albumina/química , Pré-Albumina/genética , Proteólise
20.
Biochim Biophys Acta ; 1833(6): 1388-95, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23500900

RESUMO

Ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) inhibits insulin signaling and action. Understanding the mechanisms underlying ENPP1 expression may help unravel molecular mechanisms of insulin resistance. Recent data suggest a role of ENPP1-3'untraslated region (UTR), in controlling ENPP1 expression. We sought to identify trans-acting ENPP1-3'UTR binding proteins, and investigate their role on insulin signaling. By RNA pull-down, 49 proteins bound to ENPP1-3'UTR RNA were identified by mass spectrometry (MS). Among these, in silico analysis of genome wide association studies and expression profile datasets pointed to N-acetylgalactosaminyltransferase 2 gene (GALNT2) for subsequent investigations. Gene expression levels were evaluated by RT-PCR. Protein expression levels, IRS-1 and Akt phosphorylation were evaluated by Western blot. Insulin receptor (IR) autophosphorylation was evaluated by ELISA. GALNT2 down-regulation increased while GALNT2 over-expression reduced ENPP1 expression levels. In addition, GALNT2 down-regulation reduced insulin stimulation of IR, IRS-1 and Akt phosphorylation and insulin inhibition of phosphoenolpyruvate carboxykinase (PEPCK) expression, a key neoglucogenetic enzyme. Our data point to GALNT2 as a novel factor involved in the modulation of ENPP1 expression as well as insulin signaling and action in human liver HepG2 cells.


Assuntos
Regiões 3' não Traduzidas/genética , Biomarcadores/metabolismo , Regulação da Expressão Gênica , Insulina/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Diester Fosfórico Hidrolases/genética , Pirofosfatases/genética , Transdução de Sinais , Células Cultivadas , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Rim/citologia , Rim/metabolismo , Luciferases/metabolismo , N-Acetilgalactosaminiltransferases/antagonistas & inibidores , N-Acetilgalactosaminiltransferases/genética , Análise de Sequência com Séries de Oligonucleotídeos , Diester Fosfórico Hidrolases/metabolismo , Fosforilação , Pirofosfatases/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Polipeptídeo N-Acetilgalactosaminiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA