Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Appl ; 32(2): e2506, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34870355

RESUMO

The detrimental ecological impacts of engineered shoreline protection methods (e.g., seawalls) and the need to protect the coastal zone have prompted calls for greater use of natural and nature-based infrastructure (NNBI). To balance competing needs of structural stability and ecological functioning, managers require assessments of NNBI designs and materials for differing environmental settings (e.g., among wave-energy regimes). To examine the effects of setting and oyster-based NNBI design on the provision of shoreline protection, we constructed reefs from two substrates: a novel, biodegradable material (Oyster Catcher, OC) and traditional oyster shell bags (SB) on low- and high-energy eroding salt marsh shorelines, designated based on fetch and boat wake exposure. Both reef types buffered marsh elevation change on the high-energy shoreline relative to unaltered controls, but only SB reefs were able to do so on the low-energy shoreline. Additionally, both shorelines experienced high ambient rates of retreat and declines in marsh vegetation shoot density. Although constructed reefs did not mitigate marsh retreat on the low-energy shoreline, novel OC reefs significantly reduced retreat relative to SB reefs and control sites (no reefs) on the high-energy shoreline. Those SB reefs were severely damaged by storm events, increasing their areal footprints at the expense of vertical relief. Conversely, OC reefs on both shorelines exhibited steady oyster recruitment and growth and hosted higher densities of larger oysters. To successfully provide shoreline stabilization benefits, oyster-based NNBI must be structurally stable and able to promote sustained oyster recruitment and growth. Our results indicate that deliberate decisions regarding NNBI substrate, siting, and configuration can produce resilient reefs, which reduce rates of erosion and, in some cases, enhance vertical accretion along salt marsh edges. The growth trajectory, structural stability, and co-benefit provisioning of OC reefs demonstrate the potential of alternative restoration substrates to provide valuable oyster habitat along threatened marsh shorelines.


Assuntos
Ostreidae , Áreas Alagadas , Animais , Ecossistema , Hidrodinâmica
2.
Ecol Appl ; 28(4): 897-909, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29438591

RESUMO

Positive density dependence (i.e., Allee effects) can create a threshold of population states below which extinction of the population occurs. The existence of this threshold, which can often be a complex, multi-dimensional surface, rather than a single point, is of particular importance in degraded populations for which there is a desire for successful restoration. Here, we incorporated positive density dependence into a closed, size- and age-structured integral projection model parameterized with empirical data from an eastern oyster, Crassostrea virginica, population in Pamlico Sound, North Carolina, USA. To understand the properties of the threshold surface, and implications for restoration, we introduced a general method based on a linearization of the threshold surface at its unique, unstable equilibrium. We estimated the number of oysters of a particular age (i.e., stock enhancement), or the surface area of dead shell substrate required (i.e., habitat enhancement) to move a population from an extinction trajectory to a persistence trajectory. The location of the threshold surface was strongly affected by changes in the amount of local larval retention. Traditional stock enhancement with oysters <1 yr old (i.e., spat) required three times as many oysters relative to stock enhancement with oysters between ages 3 and 7 yr old, while the success of habitat enhancement depended upon the initial size distribution of the population. The methodology described here demonstrates the importance of considering positive density dependence in oyster populations, and also provides insights into effective management and restoration strategies when dealing with a high dimensional threshold separating extinction and persistence.


Assuntos
Crassostrea , Recuperação e Remediação Ambiental , Características de História de Vida , Modelos Biológicos , Animais , Densidade Demográfica
3.
Ecol Appl ; 28(4): 871-877, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29702741

RESUMO

Nature-based solutions, such as living shorelines, have the potential to restore critical ecosystems, enhance coastal sustainability, and increase resilience to natural disasters; however, their efficacy during storm events compared to traditional hardened shorelines is largely untested. This is a major impediment to their implementation and promotion to policy-makers and homeowners. To address this knowledge gap, we evaluated rock sill living shorelines as compared to natural marshes and hardened shorelines (i.e., bulkheads) in North Carolina, USA for changes in surface elevation, Spartina alterniflora stem density, and structural damage from 2015 to 2017, including before and after Hurricane Matthew (2016). Our results show that living shorelines exhibited better resistance to landward erosion during Hurricane Matthew than bulkheads and natural marshes. Additionally, living shorelines were more resilient than hardened shorelines, as they maintained landward elevation over the two-year study period without requiring any repair. Finally, rock sill living shorelines were able to enhance S. alterniflora stem densities over time when compared to natural marshes. Our results suggest that living shorelines have the potential to improve coastal resilience while supporting important coastal ecosystems.


Assuntos
Tempestades Ciclônicas , Áreas Alagadas , Ambiente Construído , North Carolina , Poaceae
4.
Ecol Appl ; 26(7): 2206-2217, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27755725

RESUMO

Structured population models, particularly size- or age-structured, have a long history of informing conservation and natural resource management. While size is often easier to measure than age and is the focus of many management strategies, age-structure can have important effects on population dynamics that are not captured in size-only models. However, relatively few studies have included the simultaneous effects of both age- and size-structure. To better understand how population structure, particularly that of age and size, impacts restoration and management decisions, we developed and compared a size-structured integral projection model (IPM) and an age- and size-structured IPM, using a population of Crassostrea gigas oysters in the northeastern Pacific Ocean. We analyzed sensitivity of model results across values of local retention that give populations decreasing in size to populations increasing in size. We found that age- and size-structured models yielded the best fit to the demographic data and provided more reliable results about long-term demography. Elasticity analysis showed that population growth rate was most sensitive to changes in the survival of both large (>175 mm shell length) and small (<75 mm shell length) oysters, indicating that a maximum size limit, in addition to a minimum size limit, could be an effective strategy for maintaining a sustainable population. In contrast, the purely size-structured model did not detect the importance of large individuals. Finally, patterns in stable age and stable size distributions differed between populations decreasing in size due to limited local retention and populations increasing in size due to high local retention. These patterns can be used to determine population status and restoration success. The methodology described here provides general insight into the necessity of including both age- and size-structure into modeling frameworks when using population models to inform restoration and management decisions.


Assuntos
Ostreidae/anatomia & histologia , Ostreidae/crescimento & desenvolvimento , Envelhecimento , Animais , Tamanho Corporal , Monitoramento Ambiental , Modelos Biológicos , Dinâmica Populacional
5.
Environ Evid ; 13(1): 12, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-39294693

RESUMO

BACKGROUND: Shallow, tropical coral reefs face compounding threats from climate change, habitat degradation due to coastal development and pollution, impacts from storms and sea-level rise, and pulse disturbances like blast fishing, mining, dredging, and ship groundings that reduce reef height and complexity. One approach toward restoring coral reef physical structure from such impacts is deploying built structures of artificial, natural, or hybrid (both artificial and natural) origin. Built structures range from designed modules and repurposed materials to underwater sculptures and intentionally placed natural rocks. Restoration practitioners and coastal managers increasingly consider incorporating - and in many cases have already begun to incorporate - built structures into coral reef-related applications, yet synthesized evidence on the ecological (coral-related; e.g., coral growth, coral survival) and physical performance of built structures in coral ecosystems across a variety of contexts (e.g., restoration, coastal protection, mitigation, tourism) is not readily available to guide decisions. To help fill this gap and inform management decisions, we systematically mapped the global distribution and abundance of published evidence on the ecological (coral-related) and physical performance of built structure interventions in shallow (≤ 30 m), tropical (35°N to 35°S) coral ecosystems. METHODS: To identify potentially relevant articles, we used predefined and tested strategies to search two indexing platforms, one bibliographic database, two open discovery citation indexes, one web-based search engine, one novel literature discovery tool, 19 organizational websites, and information requested from stakeholders. Discovered articles were screened according to preset eligibility criteria first by title and abstract and second by full text. Articles included during full text screening were coded to extract metadata following a predefined framework. We analyzed and visualized the evidence base to answer our primary and secondary research questions and to identify knowledge clusters and gaps. Findings are reported in a narrative synthesis. RESULTS: Our search discovered > 20,000 potentially relevant unique articles, of which 258 were included in the systematic map. The evidence base spans 50 countries, and the volume of evidence increased over the past five decades. Built structures were most commonly installed for coral restoration (61%) or coastal protection (12%). Structures were predominately characterized as artificial (87%), with fewer hybrid or natural interventions. Evidence clusters existed for intentionally designed artificial structures and outcomes associated with coral-related ecological performance, including coral mortality, growth, recruitment, cover, and diversity. Pronounced evidence gaps occurred at the intersection of several ecological coral-related performance outcomes (e.g., connectivity, microbiome) across all types of built structures; gaps also existed across most ecological coral-related outcomes for artwork and repurposed artificial structures. Physical performance of built structures was most frequently evaluated for outcomes related to waves (n = 14) and sediment and morphology (n = 11) with pervasive evidence gaps across other outcomes like storm surge and water level. CONCLUSIONS: While the systematic map highlighted several evidence clusters, it also revealed pronounced evidence gaps surrounding the coral-related ecological and physical performance of built structures in coral ecosystems. The compiled evidence base will help inform policy, management, and future consideration of built structures in reef-related applications, including habitat restoration, environmental mitigation, and coastal protection. Map findings also point to promising future research avenues, such as investigating seascape-scale ecological effects of and the physical performance of built structures.

6.
Environ Evid ; 12(1): 19, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39294770

RESUMO

BACKGROUND: Shallow, tropical coral reefs face compounding threats from habitat degradation due to coastal development and pollution, impacts from storms and sea-level rise, and pulse disturbances like blast fishing, mining, dredging, and ship groundings that reduce coral reefs' height and variability. One approach toward restoring coral reef structure from these threats is deploying built structures. Built structures range from engineered modules and repurposed materials to underwater sculptures and intentionally placed natural rocks. Restoration practitioners and coastal managers increasingly consider incorporating built structures, including nature-based solutions, into coral reef-related applications. Yet, synthesized evidence on the ecological and physical performance of built structure interventions across a variety of contexts (e.g., restoration, coastal protection, mitigation, tourism) is not readily available to guide decisions. To help inform management decisions, here we aim to document the global evidence base on the ecological and physical performance of built structures in shallow (≤ 30 m) tropical (35° N to 35° S latitude) coral ecosystems. The collated evidence base on use cases and associated ecological and physical outcomes of built structure interventions can help inform future consideration of built structures in reef restoration design, siting, and implementation. METHOD: To discover evidence on the performance of built structures in coral reef-related applications, such as restoration, mitigation, and coastal protection, primary literature will be searched across indexing platforms, bibliographic databases, open discovery citation indexes, a web-based search engine, a novel literature discovery tool, and organizational websites. The geographic scope of the search is global, and there is no limitation to temporal scope. Primary literature will be screened first at the level of title and abstract and then at the full text level against defined eligibility criteria for the population, intervention, study type, and outcomes of interest. Metadata will be extracted from studies that pass both screening levels. The resulting data will be analyzed to determine the distribution and abundance of evidence. Results will be made publicly available and reported in a systematic map that includes a narrative description, identifies evidence clusters and gaps, and outlines future research directions on the use of built structures in coral reef-related applications.

7.
Environ Evid ; 12(1): 11, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-39294753

RESUMO

BACKGROUND: Anthropogenic pressures and climate change threaten the capacity of ecosystems to deliver a variety of services, including protecting coastal communities from hazards like flooding and erosion. Human interventions aim to buffer against or overcome these threats by providing physical protection for existing coastal infrastructure and communities, along with added ecological, social, or economic co-benefits. These interventions are a type of nature-based solution (NBS), broadly defined as actions working with nature to address societal challenges while also providing benefits for human well-being, biodiversity, and resilience. Despite the increasing popularity of NBS for coastal protection, sometimes in lieu of traditional hardened shorelines (e.g., oyster reefs instead of bulkheads), gaps remain in our understanding of whether common NBS interventions for coastal protection perform as intended. To help fill these knowledge gaps, we aim to identify, collate, and map the evidence base surrounding the performance of active NBS interventions related to coastal protection across a suite of ecological, physical, social, and economic outcomes in salt marsh, seagrass, kelp, mangrove, shellfish reef, and coral reef systems. The resulting evidence base will highlight the current knowledge on NBS performance and inform future uses of NBS meant for coastal protection. METHODS: Searches for primary literature on performance of NBS for coastal protection in shallow, biogenic ecosystems will be conducted using a predefined list of indexing platforms, bibliographic databases, open discovery citation indexes, and organizational databases and websites, as well as an online search engine and novel literature discovery tool. All searches will be conducted in English and will be restricted to literature published from 1980 to present. Resulting literature will be screened against set inclusion criteria (i.e., population, intervention, outcome, study type) at the level of title and abstract followed by full text. Screening will be facilitated by a web-based active learning tool that incorporates user feedback via machine learning to prioritize articles for review. Metadata will be extracted from articles that meet inclusion criteria and summarized in a narrative report detailing the distribution and abundance of evidence surrounding NBS performance, including evidence clusters, evidence gaps, and the precision and sensitivity of the search strategy.

8.
PLoS One ; 14(1): e0210936, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682064

RESUMO

Geospatial habitat suitability index (HSI) models have emerged as powerful tools that integrate pertinent spatial information to guide habitat restoration efforts, but have rarely accounted for spatial variation in ecosystem service provision. In this study, we utilized satellite-derived chlorophyll a concentrations for Pamlico Sound, North Carolina, USA in conjunction with data on water flow velocities and dissolved oxygen concentrations to identify potential restoration locations that would maximize the oyster reef-associated ecosystem service of water filtration. We integrated these novel factors associated with oyster water filtration ecosystem services within an existing, 'Metapopulation Persistence' focused GIS-based, HSI model containing biophysical (e.g., salinity, oyster larval connectivity) and logistical (e.g., distance to nearest restoration material stockpile site) factors to identify suitable locations for oyster restoration that maximize long-term persistence of restored oyster populations and water filtration ecosystem service provision. Furthermore, we compared the 'Water Filtration' optimized HSI with the HSI optimized for 'Metapopulation Persistence,' as well as a hybrid model that optimized for both water filtration and metapopulation persistence. Optimal restoration locations (i.e., locations corresponding to the top 1% of suitability scores) were identified that were consistent among the three HSI scenarios (i.e., "win-win" locations), as well as optimal locations unique to a given HSI scenario (i.e., "tradeoff" locations). The modeling framework utilized in this study can provide guidance to restoration practitioners to maximize the cost-efficiency and ecosystem services value of habitat restoration efforts. Furthermore, the functional relationships between oyster water filtration and chlorophyll a concentrations, water flow velocities, and dissolved oxygen applied in this study can guide field- and lab-testing of hypotheses related to optimal conditions for oyster reef restoration to maximize water quality enhancement benefits.


Assuntos
Conservação dos Recursos Naturais/métodos , Crassostrea , Ecossistema , Estuários , Sistemas de Informação Geográfica , Animais , Clorofila A/análise , Crassostrea/crescimento & desenvolvimento , Modelos Biológicos , North Carolina , Oxigênio/análise , Dinâmica Populacional , Salinidade
9.
Ecology ; 100(10): e02813, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291466

RESUMO

The generality of ecological patterns depends inextricably on the scale at which they are examined. We investigated patterns of crab distribution and the relationship between crabs and vegetation in salt marshes at multiple scales. By using consistent monitoring protocols across 15 U.S. National Estuarine Research Reserves, we were able to synthesize patterns from the scale of quadrats to the entire marsh landscape to regional and national scales. Some generalities emerged across marshes from our overall models, and these are useful for informing broad coastal management policy. We found that crab burrow distribution within a marsh could be predicted by marsh elevation, distance to creek and soil compressibility. While these physical factors also affected marsh vegetation cover, we did not find a strong or consistent overall effect of crabs at a broad scale in our multivariate model, though regressions conducted separately for each site revealed that crab burrows were negatively correlated with vegetation cover at 4 out of 15 sites. This contrasts with recent smaller-scale studies and meta-analyses synthesizing such studies that detected strong negative effects of crabs on marshes, likely because we sampled across the entire marsh landscape, while targeted studies are typically limited to low-lying areas near creeks, where crab burrow densities are highest. Our results suggest that sea-level rise generally poses a bigger threat to marshes than crabs, but there will likely be interactions between these physical and biological factors. Beyond these generalities across marshes, we detected some regional differences in crab community composition, richness, and abundance. However, we found striking differences among sites within regions, and within sites, in terms of crab abundance and relationships to marsh integrity. Although generalities are broadly useful, our findings indicate that local managers cannot rely on data from other nearby systems, but rather need local information for developing salt marsh management strategies.


Assuntos
Braquiúros , Áreas Alagadas , Animais , Ecologia , Solo
10.
PLoS One ; 12(2): e0173007, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28235024

RESUMO

Invasive species can positively, neutrally, or negatively affect the provision of ecosystem services. The direction and magnitude of this effect can be a function of the invaders' density and the service(s) of interest. We assessed the density-dependent effect of an invasive marsh grass, Phragmites australis, on three ecosystem services (plant diversity and community structure, shoreline stabilization, and carbon storage) in two oligohaline marshes within the North Carolina Coastal Reserve and National Estuarine Research Reserve System (NCNERR), USA. Plant species richness was equivalent among low, medium and high Phragmites density plots, and overall plant community composition did not vary significantly by Phragmites density. Shoreline change was most negative (landward retreat) where Phragmites density was highest (-0.40 ± 0.19 m yr-1 vs. -0.31 ± 0.10 for low density Phragmites) in the high energy marsh of Kitty Hawk Woods Reserve and most positive (soundward advance) where Phragmites density was highest (0.19 ± 0.05 m yr-1 vs. 0.12 ± 0.07 for low density Phragmites) in the lower energy marsh of Currituck Banks Reserve, although there was no significant effect of Phragmites density on shoreline change. In Currituck Banks, mean soil carbon content was approximately equivalent in cores extracted from low and high Phragmites density plots (23.23 ± 2.0 kg C m-3 vs. 22.81 ± 3.8). In Kitty Hawk Woods, mean soil carbon content was greater in low Phragmites density plots (36.63 ± 10.22 kg C m-3) than those with medium (13.99 ± 1.23 kg C m-3) or high density (21.61 ± 4.53 kg C m-3), but differences were not significant. These findings suggest an overall neutral density-dependent effect of Phragmites on three ecosystem services within two oligohaline marshes in different environmental settings within a protected reserve system. Moreover, the conceptual framework of this study can broadly inform an ecosystem services-based approach to invasive species management.


Assuntos
Espécies Introduzidas , Poaceae , Áreas Alagadas , Conservação dos Recursos Naturais , Estuários , North Carolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA