Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077045

RESUMO

The Schuurs−Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopment Disorder (PACS1-NDD) is a rare autosomal dominant disease caused by mutations in the PACS1 gene. To date, only 87 patients have been reported and, surprisingly, most of them carry the same variant (c.607C>T; p.R203W). The most relevant clinical features of the syndrome include neurodevelopment delay, seizures or a recognizable facial phenotype. Moreover, some of these characteristics overlap with other syndromes, such as the PACS2 or Wdr37 syndromes. The encoded protein phosphofurin acid cluster sorting 1 (PACS-1) is able to bind to different client proteins and direct them to their subcellular final locations. Therefore, although its main function is protein trafficking, it could perform other roles related to its client proteins. In patients with PACS1-NDD, a gain-of-function or a dominant negative mechanism for the mutated protein has been suggested. This, together with the fact that most of the patients carry the same genetic variant, makes it a good candidate for novel therapeutic approaches directed to decreasing the toxic effect of the mutated protein. Some of these strategies include the use of antisense oligonucleotides (ASOs) or targeting of its client proteins.


Assuntos
Proteínas de Transporte Vesicular , Humanos , Mutação , Fenótipo , Transporte Proteico , Síndrome , Proteínas de Transporte Vesicular/genética
2.
Clin Genet ; 98(6): 571-576, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33009664

RESUMO

The gamma-1 isoform of casein kinase 1, the protein encoded by CSNK1G1, is involved in the growth and morphogenesis of cells. This protein is expressed ubiquitously among many tissue types, including the brain, where it regulates the phosphorylation of N-methyl-D-aspartate receptors and plays a role in synaptic transmission. One prior individual with a de novo variant in CSNK1G presenting with severe developmental delay and early-onset epilepsy has been reported. Here we report an updated clinical history of this previously published case, as well as four additional individuals with de novo variants in CSNK1G1 identified via microarray-based comparative genomic hybridization, exome, or genome sequencing. All individuals (n = 5) had developmental delay. At least three individuals had diagnoses of autism spectrum disorder. All participants were noted to have dysmorphic facial features, although the reported findings varied widely and therefore may not clearly be recognizable. None of the participants had additional major malformations. Taken together, our data suggest that CSNK1G1 may be a cause of syndromic developmental delay and possibly autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Predisposição Genética para Doença , Adolescente , Adulto , Transtorno do Espectro Autista/patologia , Caseína Quinase II/genética , Criança , Pré-Escolar , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/patologia , Feminino , Heterozigoto , Humanos , Masculino , Sequenciamento Completo do Genoma , Adulto Jovem
3.
Am J Med Genet A ; 182(7): 1690-1696, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32476269

RESUMO

Cornelia de Lange syndrome (CdLS), Rubinstein-Taybi syndrome (RSTS), and KBG syndrome are three distinct developmental human disorders. Variants in seven genes belonging to the cohesin pathway, NIPBL, SMC1A, SMC3, HDAC8, RAD21, ANKRD11, and BRD4, were identified in about 80% of patients with CdLS, suggesting that additional causative genes remain to be discovered. Two genes, CREBBP and EP300, have been associated with RSTS, whereas KBG results from variants in ANKRD11. By exome sequencing, a genetic cause was elucidated in two patients with clinical diagnosis of CdLS but without variants in known CdLS genes. In particular, genetic variants in EP300 and ANKRD11 were identified in the two patients with CdLS. EP300 and ANKRD11 pathogenic variants caused the reduction of the respective proteins suggesting that their low levels contribute to CdLS-like phenotype. These findings highlight the clinical overlap between CdLS, RSTS, and KBG and support the notion that these rare disorders are linked to abnormal chromatin remodeling, which in turn affects the transcriptional machinery.


Assuntos
Síndrome de Cornélia de Lange/etiologia , Proteína p300 Associada a E1A/genética , Proteínas Repressoras/genética , Anormalidades Múltiplas/etiologia , Doenças do Desenvolvimento Ósseo/etiologia , Criança , Pré-Escolar , Síndrome de Cornélia de Lange/genética , Fácies , Feminino , Variação Genética , Humanos , Lactente , Deficiência Intelectual/etiologia , Masculino , Síndrome de Rubinstein-Taybi/etiologia , Anormalidades Dentárias/etiologia , Sequenciamento do Exoma
4.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033219

RESUMO

Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features. DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and management of genetic diseases by analysing the features of affected individuals. Here, we performed a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9% of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the prediction accuracy, whereas our results indicate a correlation between the clinical score and affected genes. Furthermore, each gene presents a different pattern recognition that may be used to develop new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we conclude that computer-assisted image analysis based on deep learning could support the clinical diagnosis of CdLS.


Assuntos
Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Face/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Síndrome de Cornélia de Lange/patologia , Fácies , Feminino , Variação Genética/genética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Lactente , Masculino , Redes Neurais de Computação , Fenótipo , Adulto Jovem
5.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817290

RESUMO

There are three human enzymes with HMG-CoA lyase activity that are able to synthesize ketone bodies in different subcellular compartments. The mitochondrial HMG-CoA lyase was the first to be described, and catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetate and acetyl-CoA, the common final step in ketogenesis and leucine catabolism. This protein is mainly expressed in the liver and its function is metabolic, since it produces ketone bodies as energetic fuels when glucose levels are low. Another isoform is encoded by the same gene for the mitochondrial HMG-CoA lyase (HMGCL), but it is located in peroxisomes. The last HMG-CoA lyase to be described is encoded by a different gene, HMGCLL1, and is located in the cytosolic side of the endoplasmic reticulum membrane. Some activity assays and tissue distribution of this enzyme have shown the brain and lung as key tissues for studying its function. Although the roles of the peroxisomal and cytosolic HMG-CoA lyases remain unknown, recent studies highlight the role of ketone bodies in metabolic remodeling, homeostasis, and signaling, providing new insights into the molecular and cellular function of these enzymes.


Assuntos
Citosol/enzimologia , Mitocôndrias/enzimologia , Oxo-Ácido-Liases/metabolismo , Peroxissomos/enzimologia , Metabolismo Energético , Evolução Molecular , Humanos , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Corpos Cetônicos/metabolismo , Fígado/enzimologia , Oxo-Ácido-Liases/classificação , Oxo-Ácido-Liases/genética
6.
Int J Mol Sci ; 19(4)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29597274

RESUMO

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency (mitochondrial HMG-CoA synthase deficiency or mHS deficiency, OMIM #605911) is an inborn error of metabolism that affects ketone body synthesis. Acute episodes include vomiting, lethargy, hepatomegaly, hypoglycemia and dicarboxylic aciduria. The diagnosis is difficult due to the relatively unspecific clinical and biochemical presentation, and fewer than 30 patients have been described. This work describes three new patients with mHS deficiency and two missense mutations c.334C>T (p.R112W) and c.430G>T (p.V144L) previously not reported. We developed a new method to express and measure the activity of the enzyme and in this work the study is extended to ten new missense variants including those of our patients. Enzymatic assays showed that three of the mutant proteins retained some but seven completely lacked activity. The identification of a patient homozygous for a mutation that retains 70% of enzyme activity opens the door to a new interpretation of the disease by demonstrating that a modest impairment of enzyme function can actually produce symptoms. This is also the first study employing molecular dynamics modelling of the enzyme mutations. We show that the correct maintenance of the dimerization surface is crucial for retaining the structure of the active center and therefore the activity of the enzyme.


Assuntos
Hidroximetilglutaril-CoA Sintase/deficiência , Erros Inatos do Metabolismo , Proteínas Mitocondriais/deficiência , Mutação de Sentido Incorreto , Multimerização Proteica , Substituição de Aminoácidos , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/patologia
7.
Int J Mol Sci ; 18(3)2017 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-28241484

RESUMO

Cornelia de Lange syndrome (CdLS) is a congenital developmental disorder characterized by craniofacial dysmorphia, growth retardation, limb malformations, and intellectual disability. Approximately 60% of patients with CdLS carry a recognizable pathological variant in the NIPBL gene, of which two isoforms, A and B, have been identified, and which only differ in the C-terminal segment. In this work, we describe the distribution pattern of the isoforms A and B mRNAs in tissues of adult and fetal origin, by qPCR (quantitative polymerase chain reaction). Our results show a higher gene expression of the isoform A, even though both seem to have the same tissue distribution. Interestingly, the expression in fetal tissues is higher than that of adults, especially in brain and skeletal muscle. Curiously, the study of fibroblasts of two siblings with a mild CdLS phenotype and a pathological variant specific of the isoform A of NIPBL (c.8387A > G; P.Tyr2796Cys), showed a similar reduction in both isoforms, and a normal sensitivity to DNA damage. Overall, these results suggest that the position of the pathological variant at the 3´ end of the NIPBL gene affecting only isoform A, is likely to be the cause of the atypical mild phenotype of the two brothers.


Assuntos
Síndrome de Cornélia de Lange/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Adolescente , Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Criança , Síndrome de Cornélia de Lange/diagnóstico , Humanos , Masculino , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Fenótipo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
8.
Am J Med Genet C Semin Med Genet ; 172(2): 198-205, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27164022

RESUMO

Cornelia de Lange Syndrome (CdLS) is an autosomal dominant (NIPBL, SMC3, and RAD21) or X-linked (SMC1A and HDAC8) disorder, characterized by distinctive craniofacial appearance, growth retardation, intellectual disability, and limb anomalies. In 2005, the Spanish CdLS Reference Center was started and now we have more than 270 cases in our database. In this special issue, we describe some of the unique or atypical patients studied by our group, whose clinical features have contributed to the expansion of the CdLS classical phenotype, helping clinicians to diagnose it. We include the case of a male with unilateral tibial hypoplasia and peroneal agenesis who had a mutation in NIPBL; we also describe one patient with a mutation in NIPBL and somatic mosaicism identified by new generation sequencing techniques; we also include one patient with CdLS and Turner syndrome; and last, an interesting patient with a duplication of the SMC1A gene. Finally, we make a short review of the splicing mutations we have found in NIPBL regarding the new knowledge on the physiological variants of the gene. © 2016 Wiley Periodicals, Inc.


Assuntos
Síndrome de Cornélia de Lange/genética , Proteínas de Ciclo Celular , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/patologia , Estudos de Associação Genética , Humanos , Masculino , Proteínas/genética , Espanha
9.
Hum Mutat ; 36(4): 454-62, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655089

RESUMO

Cornelia de Lange syndrome (CdLS) is characterized by facial dysmorphism, growth failure, intellectual disability, limb malformations, and multiple organ involvement. Mutations in five genes, encoding subunits of the cohesin complex (SMC1A, SMC3, RAD21) and its regulators (NIPBL, HDAC8), account for at least 70% of patients with CdLS or CdLS-like phenotypes. To date, only the clinical features from a single CdLS patient with SMC3 mutation has been published. Here, we report the efforts of an international research and clinical collaboration to provide clinical comparison of 16 patients with CdLS-like features caused by mutations in SMC3. Modeling of the mutation effects on protein structure suggests a dominant-negative effect on the multimeric cohesin complex. When compared with typical CdLS, many SMC3-associated phenotypes are also characterized by postnatal microcephaly but with a less distinctive craniofacial appearance, a milder prenatal growth retardation that worsens in childhood, few congenital heart defects, and an absence of limb deficiencies. While most mutations are unique, two unrelated affected individuals shared the same mutation but presented with different phenotypes. This work confirms that de novo SMC3 mutations account for ∼ 1%-2% of CdLS-like phenotypes.


Assuntos
Proteínas de Ciclo Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Heterozigoto , Mutação , Fenótipo , Alelos , Estudos de Coortes , Análise Mutacional de DNA , Exoma , Fácies , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino
10.
Int J Mol Sci ; 15(6): 10350-64, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24918291

RESUMO

Cornelia de Lange syndrome (CdLS) is a congenital developmental disorder characterized by distinctive craniofacial features, growth retardation, cognitive impairment, limb defects, hirsutism, and multisystem involvement. Mutations in five genes encoding structural components (SMC1A, SMC3, RAD21) or functionally associated factors (NIPBL, HDAC8) of the cohesin complex have been found in patients with CdLS. In about 60% of the patients, mutations in NIPBL could be identified. Interestingly, 17% of them are predicted to change normal splicing, however, detailed molecular investigations are often missing. Here, we report the first systematic study of the physiological splicing of the NIPBL gene, that would reveal the identification of four new splicing isoforms ΔE10, ΔE12, ΔE33,34, and B'. Furthermore, we have investigated nine mutations affecting splice-sites in the NIPBL gene identified in twelve CdLS patients. All mutations have been examined on the DNA and RNA level, as well as by in silico analyses. Although patients with mutations affecting NIPBL splicing show a broad clinical variability, the more severe phenotypes seem to be associated with aberrant transcripts resulting in a shift of the reading frame.


Assuntos
Síndrome de Cornélia de Lange/genética , Proteínas/genética , Splicing de RNA , Adolescente , Adulto , Proteínas de Ciclo Celular , Criança , Pré-Escolar , Síndrome de Cornélia de Lange/patologia , Feminino , Mutação da Fase de Leitura , Humanos , Lactente , Masculino , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas/metabolismo , Adulto Jovem
11.
An Pediatr (Engl Ed) ; 100(5): 352-362, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735830

RESUMO

Cornelia de Lange syndrome (CdLS) is a rare congenital developmental disorder with multisystemic involvement. The clinical presentation is highly variable, but the classic phenotype, characterized by distinctive craniofacial features, pre- and postnatal growth retardation, extremity reduction defects, hirsutism and intellectual disability can be distinguished from the nonclassic phenotype, which is generally milder and more difficult to diagnose. In addition, the clinical features overlap with those of other neurodevelopmental disorders, so the use of consensus clinical criteria and artificial intelligence tools may be helpful in confirming the diagnosis. Pathogenic variants in NIPBL, which encodes a protein related to the cohesin complex, have been identified in more than 60% of patients, and pathogenic variants in other genes related to this complex in another 15%: SMC1A, SMC3, RAD21, and HDAC8. Technical advances in large-scale sequencing have allowed the description of additional genes (BRD4, ANKRD11, MAU2), but the lack of molecular diagnosis in 15% of individuals and the substantial clinical heterogeneity of the syndrome suggest that other genes and mechanisms may be involved. Although there is no curative treatment, there are symptomatic/palliative treatments that paediatricians should be aware of. The main medical complication in classic SCdL is gastro-esophageal reflux (GER), which should be treated early.


Assuntos
Síndrome de Cornélia de Lange , Fenótipo , Criança , Humanos , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética
12.
Cureus ; 16(4): e57378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38694681

RESUMO

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a rare polymalformative genetic disorder with multisystemic involvement. Despite numerous clinical and molecular studies, the specific evaluation of the quality of life (QoL) and its relationship with syndrome-specific risk factors has not been explored. METHODS: The QoL of 33 individuals diagnosed with CdLS, aged between 4 and 21 years, was assessed using the Kidslife questionnaire. Specifically, the influence of 14 risk factors on overall QoL and 8 of its domains was analyzed. RESULTS: The study revealed below-median QoL (45.3 percentile), with the most affected domains being physical well-being, personal development, and self-determination. When classifying patients based on their QoL and affected domains, variants in the NIPBL gene, clinical scores ≥11, and severe behavioral and communication issues were found to be the main risk factors. CONCLUSIONS: We emphasize the need for a comprehensive approach to CdLS that encompasses clinical, molecular, psychosocial, and emotional aspects. The "Kidslife questionnaire" proved to be a useful tool for evaluating QoL, risk factors, and the effectiveness of implemented strategies. In this study, we underscore the importance of implementing corrective measures to improve the clinical score. Furthermore, we highlight the necessity of applying specific therapies for behavioral problems after ruling out underlying causes such as pain or gastroesophageal reflux and implementing measures that facilitate communication and promote social interaction.

13.
Mol Genet Metab ; 108(4): 232-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23465862

RESUMO

Eukaryotic cells can be protected against mutations that generate stop codons by nonsense-mediated mRNA decay (NMD) and/or nonsense-associated altered splicing (NAS). However, the processes are only partially understood and do not always occur. In this work, we study these phenomena in the stop codon mutations c.109G>T (p.Glu37*) and c.504_505delCT; the second and third most frequent mutations in HMG-CoA lyase deficiency (MIM #246450). The deficiency affects the synthesis of ketone bodies and produces severe disorders during early childhood. We used a minigene approach, real-time quantitative PCR and the inhibition of NMD by puromycin treatment, to study the effect of stop codons on splicing (NAS) and NMD in seven patients. Surprisingly, none of the stop codons studied appears to be the direct cause of aberrant splicing. In the mutation c.109G>T, the splicing is due to the base change G>T at position 109, which is critical and cannot be explained by disruption of exonic splicing enhancer (ESE) elements, by the appearance of exonic splicing silencer (ESS) elements which were predicted by bioinformatic tools or by the stop codons. Moreover, the mutation c.504_505delCT produces two mRNA transcripts both with stop codons that generate simultaneous NMD phenomena. The effects of the mutations studied on splicing seemed to be similar in all the patients. Furthermore, we report a Spanish patient with 3-hydroxy-3-methylglutaric aciduria and a novel missense mutation: c.825C>G (p.Asn275Lys).


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Degradação do RNAm Mediada por Códon sem Sentido , Splicing de RNA/genética , Acetil-CoA C-Acetiltransferase/deficiência , Acetil-CoA C-Acetiltransferase/genética , Sequência de Bases , Pré-Escolar , Códon sem Sentido/genética , Códon de Terminação/genética , Feminino , Humanos , Mutação de Sentido Incorreto , Análise de Sequência de DNA
14.
J Clin Med ; 12(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373745

RESUMO

BACKGROUND: PACS1 neurodevelopmental disorder (PACS1-NDD) (MIM# 615009) is a rare autosomal dominant disease characterized by neurodevelopmental delay, dysmorphic facial features, and congenital malformations. Heart disease (HD) is frequently present in individuals with PACS1-NDD, but a compressive review of these anomalies and an evaluation of cardiac function in a cohort of patients are lacking. METHODS: (i) Cardiac evaluation in 11 PACS1-NDD patients was conducted using conventional echocardiography. (ii) Heart function was assessed by tissue Doppler imaging, and two-dimensional speckle tracking was performed in seven patients and matched controls. (iii) This systematic review focused on determining HD prevalence in individuals with PACS1-NDD. RESULTS: In our cohort, 7 of 11 patients presented HD. (Among them, three cases of ascending aortic dilatation (AAD) were detected and one mitral valve prolapse (MVP).) None of the patients showed echocardiographic pathological values, and the left global longitudinal strain was not significantly different between patients and controls (patients -24.26 ± 5.89% vs. controls -20.19 ± 1.75%, p = 0.3176). In the literature review, almost 42% (42/100) of individuals with PACS1-NDD reportedly experienced HD. Septal defects were the most common malformation, followed by patent ductus arteriosus. CONCLUSIONS: Our results show a high prevalence of HD in PACS1-NDD patients; in this way, AAD and MVP are reported for the first time in this syndrome. Furthermore, a detailed cardiac function evaluation in our cohort did not reveal evidence of cardiac dysfunction in individuals with PACS1-NDD. Cardiology evaluation should be included for all individuals with Schuurs-Hoeijmakers syndrome.

15.
J Lipid Res ; 53(10): 2046-2056, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22847177

RESUMO

A novel lyase activity enzyme is characterized for the first time: HMG-CoA lyase-like1 (er-cHL), which is a close homolog of mitochondrial HMG-CoA lyase (mHL). Initial data show that there are nine mature transcripts for the novel gene HMGCLL1, although none of them has all its exons. The most abundant transcript is called "variant b," and it lacks exons 2 and 3. Moreover, a three-dimensional model of the novel enzyme is proposed. Colocalization studies show a dual location of the er-cHL in the endoplasmic reticulum (ER) and cytosol, but not in mitochondria or peroxisomes. Furthermore, the dissociation experiment suggests that it is a nonendoplasmic reticulum integral membrane protein. The kinetic parameters of er-cHL indicate that it has a lower V(max) and a higher substrate affinity than mHL. Protein expression and lyase activity were found in several tissues, and were particularly strong in lung and kidney. The occurrence of er-cHL in brain is surprising, as mHL has not been found there. Although mHL activity is clearly associated with energy metabolism, the results suggest that er-cHL is more closely related to another metabolic function, mostly at the pulmonary and brain level.


Assuntos
Citosol/enzimologia , Retículo Endoplasmático/enzimologia , Oxo-Ácido-Liases/análise , Oxo-Ácido-Liases/química , Sequência de Aminoácidos , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Oxo-Ácido-Liases/genética , Peroxissomos/enzimologia , Peroxissomos/metabolismo , Processamento de Proteína
16.
BMC Med Genet ; 13: 43, 2012 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-22676896

RESUMO

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a dominantly inherited disorder characterized by facial dysmorphism, growth and cognitive impairment, limb malformations and multiple organ involvement. Mutations in NIPBL gene account for about 60% of patients with CdLS. This gene encodes a key regulator of the Cohesin complex, which controls sister chromatid segregation during both mitosis and meiosis. Turner syndrome (TS) results from the partial or complete absence of one of the X chromosomes, usually associated with congenital lymphedema, short stature, and gonadal dysgenesis. CASE PRESENTATION: Here we report a four-year-old female with CdLS due to a frameshift mutation in the NIPBL gene (c.1445_1448delGAGA), who also had a tissue-specific mosaic 45,X/46,XX karyotype. The patient showed a severe form of CdLS with craniofacial dysmorphism, pre- and post-natal growth delay, cardiovascular abnormalities, hirsutism and severe psychomotor retardation with behavioural problems. She also presented with minor clinical features consistent with TS, including peripheral lymphedema and webbed neck. The NIPBL mutation was present in the two tissues analysed from different embryonic origins (peripheral blood lymphocytes and oral mucosa epithelial cells). However, the percentage of cells with monosomy X was low and variable in tissues. These findings indicate that, ontogenically, the NIPBL mutation may have appeared before the mosaic monosomy X. CONCLUSIONS: The coexistence in several patients of these two rare disorders raises the issue of whether there is indeed a cause-effect association. The detailed clinical descriptions indicate predominant CdLS phenotype, although additional TS manifestations may appear in adolescence.


Assuntos
Síndrome de Cornélia de Lange/genética , Mutação da Fase de Leitura , Mosaicismo , Proteínas/genética , Síndrome de Turner/genética , Proteínas de Ciclo Celular , Criança , Feminino , Humanos , Linfócitos , Mucosa Bucal , Índice de Gravidade de Doença
17.
Mol Biol Rep ; 39(4): 4777-85, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21952825

RESUMO

The genes HMGCS2 and HMGCL encode the two main enzymes for ketone-body synthesis, mitochondrial HMG-CoA synthase and HMG-CoA lyase. Here, we identify and describe possible splice variants of these genes in human tissues. We detected an alternative transcript of HMGCS2 carrying a deletion of exon 4, and two alternative transcripts of HMGCL with deletions of exons 5 and 6, and exons 5, 6 and 7, respectively. All splice variants maintained the reading frame. However, Western blot studies and overexpression measurements in eukaryotic or prokaryotic cell models did not reveal HL or mHS protein variants. Both genes showed a similar distribution of the inactive variants in different tissues. Surprisingly, the highest percentages were found in tissues where almost no ketone bodies are synthesized: heart, skeletal muscle and brain. Our results suggest that alternative splicing might coordinately block the two main enzymes of ketogenesis in specific human tissues.


Assuntos
Processamento Alternativo/genética , Vias Biossintéticas/genética , Hidroximetilglutaril-CoA Sintase/genética , Corpos Cetônicos/biossíntese , Mitocôndrias/enzimologia , Mitocôndrias/genética , Oxo-Ácido-Liases/genética , Western Blotting , Biologia Computacional , Células HEK293 , Humanos , Hidroximetilglutaril-CoA Sintase/química , Hidroximetilglutaril-CoA Sintase/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Oxo-Ácido-Liases/química , Oxo-Ácido-Liases/metabolismo , Estrutura Secundária de Proteína , Reação em Cadeia da Polimerase em Tempo Real
18.
Front Genet ; 13: 993064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246631

RESUMO

Ultimate advances in genetic technologies have permitted the detection of transmitted cases of congenital diseases due to parental gonadosomatic mosaicism. Regarding Cornelia de Lange syndrome (CdLS), up to date, only a few cases are known to follow this inheritance pattern. However, the high prevalence of somatic mosaicism recently reported in this syndrome (∼13%), together with the disparity observed in tissue distribution of the causal variant, suggests that its prevalence in this disorder could be underestimated. Here, we report a new case of parental gonadosomatic mosaicism in SMC1A gene that causes inherited CdLS, in which the mother of the patient carries the causative variant in very low allele frequencies in buccal swab and blood. While the affected child presents with typical CdLS phenotype, his mother does not show any clinical manifestations. As regards SMC1A, the difficulty of clinical identification of carrier females has been already recognized, as well as the gender differences observed in CdLS expressivity when the causal variant is found in this gene. Currently, the use of DNA deep-sequencing techniques is highly recommended when it comes to molecular diagnosis of patients, as well as in co-segregation studies. These enable us to uncover gonadosomatic mosaic events in asymptomatic or oligosymptomatic parents that had been overlooked so far, which might have great implications regarding genetic counseling for recurrence risk.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36482071

RESUMO

Objective: The aim of this study was to expand knowledge about endocrine disorders in individuals with Cornelia de Lange syndrome (CdLS), a rare developmental genetic disorder with anomalies in multiple organs and systems. Methods: Hormone levels, clinical scores, anthropometric measurements, and molecular analysis were assessed in 24 individuals with CdLS. Results: Hyperprolactinemia was the most common endocrine disorder. Three patients showed subclinical hypothyroidism. In the gonadotropic axis, mildly delayed puberty was observed, as well as genital anomalies, such as cryptorchidism. Despite short stature, levels of insulin-like growth factor 1 and insulin-like growth factor-binding protein 3 were normal, on average. Three prepubertal individuals without risk factors had higher than normal values for the homeostatic model assessment of insulin resistance (HOMA-IR) and for insulinemia, suggesting insulin resistance. Furthermore, two adults had elevated BMIs associated with HOMA-IR values over the cut-off values. Conclusion: CdLS can lead to dysregulation of the endocrine system, particularly in patients with high HOMA-IR values and insulinemia who are at risk of insulin resistance. Therefore, clinical follow-ups with hormonal assessments are proposed for individuals with CdLS.

20.
Int J Cardiovasc Imaging ; 38(11): 2291-2302, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36434327

RESUMO

This study assesses a possible cardiac dysfunction in individuals with Cornelia de Lange syndrome (CdLS) without diagnosed congenital heart disease (CHD) and its association with other factors. Twenty patients and 20 controls were included in the study divided into three age-dependent groups (A: < 10 yrs, B: 10-20 yrs, C: > 20 yrs), and were evaluated using conventional echocardiography, tissue doppler imaging (TDI), two-dimensional speckle tracking and genetic and biochemical analyses. The left ventricular global longitudinal strain (GLS) was altered (< 15.9%) in 55% of patients, being pathological in the older group (A: 19.7 ± 6.6; B: -17.2 ± 4.7; C: -13.6 ± 2.9). The speckle tracking technique revealed a downward trend in the values of strain, strain rate and velocity, especially in the oldest group. Likewise, the ejection fraction (LVEF) and shortening fraction (LVFS) values, although preserved, also showed a decreased with age (p < 0.05). The analytical markers of cardiovascular risk and cardiac function showed no alterations. The molecular analyses revealed 16 individuals carrying pathogenic variants in NIPBL, two with variants in SMC1A, one with a variant in RAD21 and one with a HDAC8 variant. This is the first systematic approach that demonstrates that individuals with CdLS may present early cardiomyopathy, which can be detected by speckle tracking technique even before the appearance of clinical symptoms and the alteration of other echocardiographic or analytical parameters. For all these reasons, cardiological followup is suggested even in the absence of CHD, especially from adolescence onwards.


Assuntos
Cardiomiopatias , Síndrome de Cornélia de Lange , Cardiopatias Congênitas , Adolescente , Humanos , Criança , Síndrome de Cornélia de Lange/diagnóstico por imagem , Síndrome de Cornélia de Lange/genética , Valor Preditivo dos Testes , Ecocardiografia/métodos , Volume Sistólico , Histona Desacetilases , Proteínas Repressoras , Proteínas de Ciclo Celular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA