Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 56(4): 744-746, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37044064

RESUMO

How can beneficial microorganisms be distinguished from pathogenic ones? In this issue of Immunity, Peterson et al. discovered that a specific phenazine, which is part of a family of toxic metabolites expressed by pathogenic bacteria, is detected by Caenorhabditis elegans by directly binding to a nuclear hormone receptor, promoting the expression of detoxifying enzymes and immunity-related genes, thus protecting the worm.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Regulação da Expressão Gênica , Transdução de Sinais
2.
Nat Immunol ; 21(11): 1315-1316, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32958929
3.
Nat Immunol ; 15(9): 833-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25086774

RESUMO

Immune defenses are triggered by microbe-associated molecular patterns or as a result of damage to host cells. The elicitors of immune responses in the nematode Caenorhabditis elegans are unclear. Using a genome-wide RNA-mediated interference (RNAi) screen, we identified the G protein-coupled receptor (GPCR) DCAR-1 as being required for the response to fungal infection and wounding. DCAR-1 acted in the epidermis to regulate the expression of antimicrobial peptides via a conserved p38 mitogen-activated protein kinase pathway. Through targeted metabolomics analysis we identified the tyrosine derivative 4-hydroxyphenyllactic acid (HPLA) as an endogenous ligand. Our findings reveal DCAR-1 and its cognate ligand HPLA to be triggers of the epidermal innate immune response in C. elegans and highlight the ancient role of GPCRs in host defense.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Epiderme/imunologia , Imunidade Inata/imunologia , Micoses/imunologia , Fenilpropionatos/imunologia , Receptores Acoplados a Proteínas G/imunologia , Ferimentos e Lesões/imunologia , Animais , Ligantes , Sistema de Sinalização das MAP Quinases/imunologia , Interferência de RNA
4.
PLoS Genet ; 17(6): e1009600, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34166401

RESUMO

Animals and plants need to defend themselves from pathogen attack. Their defences drive innovation in virulence mechanisms, leading to never-ending cycles of co-evolution in both hosts and pathogens. A full understanding of host immunity therefore requires examination of pathogen virulence strategies. Here, we take advantage of the well-studied innate immune system of Caenorhabditis elegans to dissect the action of two virulence factors from its natural fungal pathogen Drechmeria coniospora. We show that these two enterotoxins have strikingly different effects when expressed individually in the nematode epidermis. One is able to interfere with diverse aspects of host cell biology, altering vesicle trafficking and preventing the key STAT-like transcription factor STA-2 from activating defensive antimicrobial peptide gene expression. The second increases STA-2 levels in the nucleus, modifies the nucleolus, and, potentially as a consequence of a host surveillance mechanism, causes increased defence gene expression. Our results highlight the remarkably complex and potentially antagonistic mechanisms that come into play in the interaction between co-evolved hosts and pathogens.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Enterotoxinas/genética , Hypocreales/patogenicidade , Imunidade Inata , Fatores de Transcrição STAT/genética , Esporos Fúngicos/patogenicidade , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Coevolução Biológica , Transporte Biológico , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/imunologia , Enterotoxinas/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Hypocreales/crescimento & desenvolvimento , Longevidade/genética , Longevidade/imunologia , Fatores de Transcrição STAT/imunologia , Transdução de Sinais , Esporos Fúngicos/crescimento & desenvolvimento , Vesículas Transportadoras/metabolismo , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Immunogenetics ; 74(1): 63-73, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34761293

RESUMO

The natural environment of the free-living nematode Caenorhabditis elegans is rich in pathogenic microbes. There is now ample evidence to indicate that these pathogens exert a strong selection pressure on C. elegans, and have shaped its genome, physiology, and behaviour. In this short review, we concentrate on how C. elegans stands out from other animals in terms of its immune repertoire and innate immune signalling pathways. We discuss how C. elegans often detects pathogens because of their effects on essential cellular processes, or organelle integrity, in addition to direct microbial recognition. We illustrate the extensive molecular plasticity that is characteristic of immune defences in C. elegans and highlight some remarkable instances of lineage-specific innovation in innate immune mechanisms.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Evolução Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Imunidade Inata/genética , Transdução de Sinais/fisiologia
6.
Metabolomics ; 17(3): 25, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594638

RESUMO

INTRODUCTION: Lipidomic profiling allows 100s if not 1000s of lipids in a sample to be detected and quantified. Modern lipidomics techniques are ultra-sensitive assays that enable the discovery of novel biomarkers in a variety of fields and provide new insight in mechanistic investigations. Despite much progress in lipidomics, there remains, as for all high throughput "omics" strategies, the need to develop strategies to standardize and integrate quality control into studies in order to enhance robustness, reproducibility, and usability of studies within specific fields and beyond. OBJECTIVES: We aimed to understand how much results from lipid profiling in the model organism Caenorhabditis elegans are influenced by different culture conditions in different laboratories. METHODS: In this work we have undertaken an inter-laboratory study, comparing the lipid profiles of N2 wild type C. elegans and daf-2(e1370) mutants lacking a functional insulin receptor. Sample were collected from worms grown in four separate laboratories under standardized growth conditions. We used an UPLC-UHR-ToF-MS system allowing chromatographic separation before MS analysis. RESULTS: We found common qualitative changes in several marker lipids in samples from the individual laboratories. On the other hand, even in this controlled experimental system, the exact fold-changes for each marker varied between laboratories. CONCLUSION: Our results thus reveal a serious limitation to the reproducibility of current lipid profiling experiments and reveal challenges to the integration of such data from different laboratories.


Assuntos
Caenorhabditis elegans/química , Caenorhabditis elegans/metabolismo , Lipidômica/métodos , Lipídeos/análise , Animais , Antígenos CD , Biomarcadores , Laboratórios , Receptor de Insulina , Reprodutibilidade dos Testes
7.
PLoS Genet ; 14(7): e1007494, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30036395

RESUMO

Eukaryotic gene expression requires the coordinated action of transcription factors, chromatin remodelling complexes and RNA polymerase. The conserved nuclear protein Akirin plays a central role in immune gene expression in insects and mammals, linking the SWI/SNF chromatin-remodelling complex with the transcription factor NFκB. Although nematodes lack NFκB, Akirin is also indispensable for the expression of defence genes in the epidermis of Caenorhabditis elegans following natural fungal infection. Through a combination of reverse genetics and biochemistry, we discovered that in C. elegans Akirin has conserved its role of bridging chromatin-remodellers and transcription factors, but that the identity of its functional partners is different since it forms a physical complex with NuRD proteins and the POU-class transcription factor CEH-18. In addition to providing a substantial step forward in our understanding of innate immune gene regulation in C. elegans, our results give insight into the molecular evolution of lineage-specific signalling pathways.


Assuntos
Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/imunologia , Proteínas de Ciclo Celular/imunologia , Evolução Molecular , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/imunologia , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Proteínas de Homeodomínio/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/imunologia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Ligação Proteica/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
8.
Immunogenetics ; 74(1): 75, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34882258
9.
BMC Biol ; 14(1): 104, 2016 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-27927209

RESUMO

BACKGROUND: Tribbles proteins are conserved pseudokinases that function to control kinase signalling and transcription in diverse biological processes. Abnormal function in human Tribbles has been implicated in a number of diseases including leukaemia, metabolic syndromes and cardiovascular diseases. Caenorhabditis elegans Tribbles NIPI-3 was previously shown to activate host defense upon infection by promoting the conserved PMK-1/p38 mitogen-activated protein kinase (MAPK) signalling pathway. Despite the prominent role of Tribbles proteins in many species, our knowledge of their mechanism of action is fragmented, and the in vivo functional relevance of their interactions with other proteins remains largely unknown. RESULTS: Here, by characterizing nipi-3 null mutants, we show that nipi-3 is essential for larval development and viability. Through analyses of genetic suppressors of nipi-3 null mutant lethality, we show that NIPI-3 negatively controls PMK-1/p38 signalling via transcriptional repression of the C/EBP transcription factor CEBP-1. We identified CEBP-1's transcriptional targets by ChIP-seq analyses and found them to be enriched in genes involved in development and stress responses. Unlike its cell-autonomous role in innate immunity, NIPI-3 is required in multiple tissues to control organismal development. CONCLUSIONS: Together, our data uncover an unprecedented crosstalk involving multiple tissues, in which NIPI-3 acts as a master regulator to inhibit CEBP-1 and the PMK-1/p38 MAPK pathway. In doing so, it keeps innate immunity in check and ensures proper organismal development.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas Quinases/genética , Alelos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Caenorhabditis elegans/genética , Sobrevivência Celular , Mapeamento Cromossômico , Clonagem Molecular , Repressão Epigenética , Regulação da Expressão Gênica , Imunidade Inata , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
BMC Biol ; 14: 35, 2016 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-27129311

RESUMO

BACKGROUND: Caenorhabditis elegans has emerged over the last decade as a useful model for the study of innate immunity. Its infection with the pathogenic fungus Drechmeria coniospora leads to the rapid up-regulation in the epidermis of genes encoding antimicrobial peptides. The molecular basis of antimicrobial peptide gene regulation has been previously characterized through forward genetic screens. Reverse genetics, based on RNAi, provide a complementary approach to dissect the worm's immune defenses. RESULTS: We report here the full results of a quantitative whole-genome RNAi screen in C. elegans for genes involved in regulating antimicrobial peptide gene expression. The results will be a valuable resource for those contemplating similar RNAi-based screens and also reveal the limitations of such an approach. We present several strategies, including a comprehensive class clustering method, to overcome these limitations and which allowed us to characterize the different steps of the interaction between C. elegans and the fungus D. coniospora, leading to a complete description of the MAPK pathway central to innate immunity in C. elegans. The results further revealed a cross-tissue signaling, triggered by mitochondrial dysfunction in the intestine, that suppresses antimicrobial peptide gene expression in the nematode epidermis. CONCLUSIONS: Overall, our results provide an unprecedented system's level insight into the regulation of C. elegans innate immunity. They represent a significant contribution to our understanding of host defenses and will lead to a better comprehension of the function and evolution of animal innate immunity.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/imunologia , Imunidade Inata/genética , Animais , Caenorhabditis elegans/microbiologia , Clonagem Molecular , Epiderme/imunologia , Estudos de Associação Genética , Genoma Helmíntico , Interações Hospedeiro-Patógeno , Hypocreales , Mitocôndrias/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Interferência de RNA , Transdução de Sinais , Regulação para Cima
12.
Biophys J ; 106(10): 2096-104, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24853738

RESUMO

To investigate the early stages of cell-cell interactions occurring between living biological samples, imaging methods with appropriate spatiotemporal resolution are required. Among the techniques currently available, those based on optical trapping are promising. Methods to image trapped objects, however, in general suffer from a lack of three-dimensional resolution, due to technical constraints. Here, we have developed an original setup comprising two independent modules: holographic optical tweezers, which offer a versatile and precise way to move multiple objects simultaneously but independently, and a confocal microscope that provides fast three-dimensional image acquisition. The optical decoupling of these two modules through the same objective gives users the possibility to easily investigate very early steps in biological interactions. We illustrate the potential of this setup with an analysis of infection by the fungus Drechmeria coniospora of different developmental stages of Caenorhabditis elegans. This has allowed us to identify specific areas on the nematode's surface where fungal spores adhere preferentially. We also quantified this adhesion process for different mutant nematode strains, and thereby derive insights into the host factors that mediate fungal spore adhesion.


Assuntos
Caenorhabditis elegans/microbiologia , Comunicação Celular , Hypocreales/citologia , Hypocreales/fisiologia , Microscopia Confocal/métodos , Pinças Ópticas , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Lentes , Microscopia Confocal/instrumentação , Movimento , Esporos Fúngicos/citologia , Esporos Fúngicos/fisiologia
13.
Dev Biol ; 380(2): 314-23, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23608457

RESUMO

Transcription factors play key roles in cell fate specification and cell differentiation. Previously, we showed that the LIM homeodomain factor CEH-14 is expressed in the AFD neurons where it is required for thermotaxis behavior in Caenorhabditis elegans. Here, we show that ceh-14 is expressed in the phasmid sensory neurons, PHA and PHB, a number of neurons in the tail, i.e., PHC, DVC, PVC, PVN, PVQ, PVT, PVW and PVR, as well as the touch neurons. Analysis of the promoter region shows that important regulatory elements for the expression in most neurons reside from -4kb to -1.65kb upstream of the start codon. Further, within the first introns are elements for expression in the hypodermis. Phylogenetic footprinting revealed numerous conserved motifs in these regions. In addition to the existing deletion mutation ceh-14(ch3), we isolated a new allele, ceh-14(ch2), in which only one LIM domain is disrupted. The latter mutant allele is partially defective for thermosensation. Analysis of both mutant alleles showed that they are defective in phasmid dye-filling. However, the cell body, dendritic outgrowth and ciliated endings of PHA and PHB appear normal, indicating that ceh-14 is not required for growth. The loss of a LIM domain in the ceh-14(ch2) allele causes a partial loss-of-function phenotype. Examination of the neurites of ALA and tail neurons using a ceh-14::GFP reporter shows abnormal axonal outgrowth and pathfinding.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Proteínas com Homeodomínio LIM/fisiologia , Neuritos/fisiologia , Plasmídeos/fisiologia , Fatores de Transcrição/fisiologia , Animais , Axônios/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas com Homeodomínio LIM/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
14.
Curr Biol ; 33(17): 3585-3596.e5, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541249

RESUMO

Physical contact is prevalent in the animal kingdom to recognize suitable mates by decoding information about sex, species, and maturity. Although chemical cues for mate recognition have been extensively studied, the role of mechanical cues remains elusive. Here, we show that C. elegans males recognize conspecific and reproductive mates through short-range cues, and that the attractiveness of potential mates depends on the sex and developmental stages of the hypodermis. We find that a particular group of cuticular collagens is required for mate attractiveness. These collagens maintain body stiffness to sustain mate attractiveness but do not affect the surface properties that evoke the initial step of mate recognition, suggesting that males utilize multiple sensory mechanisms to recognize suitable mates. Manipulations of body stiffness via physical interventions, chemical treatments, and 3D-printed bionic worms indicate that body stiffness is a mechanical property for mate recognition and increases mating efficiency. Our study thus extends the repertoire of sensory cues of mate recognition in C. elegans and provides a paradigm to study the important roles of mechanosensory cues in social behaviors.


Assuntos
Caenorhabditis elegans , Comportamento Sexual Animal , Animais , Masculino , Caenorhabditis elegans/fisiologia , Comportamento Sexual Animal/fisiologia , Sensação , Reprodução , Reconhecimento Psicológico
15.
Elife ; 122023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36913486

RESUMO

Apical extracellular matrices (aECMs) form a physical barrier to the environment. In Caenorhabditis elegans, the epidermal aECM, the cuticle, is composed mainly of different types of collagen, associated in circumferential ridges separated by furrows. Here, we show that in mutants lacking furrows, the normal intimate connection between the epidermis and the cuticle is lost, specifically at the lateral epidermis, where, in contrast to the dorsal and ventral epidermis, there are no hemidesmosomes. At the ultrastructural level, there is a profound alteration of structures that we term 'meisosomes,' in reference to eisosomes in yeast. We show that meisosomes are composed of stacked parallel folds of the epidermal plasma membrane, alternately filled with cuticle. We propose that just as hemidesmosomes connect the dorsal and ventral epidermis, above the muscles, to the cuticle, meisosomes connect the lateral epidermis to it. Moreover, furrow mutants present marked modifications of the biomechanical properties of their skin and exhibit a constitutive damage response in the epidermis. As meisosomes co-localise to macrodomains enriched in phosphatidylinositol (4,5) bisphosphate, they could conceivably act, like eisosomes, as signalling platforms, to relay tensile information from the aECM to the underlying epidermis, as part of an integrated stress response to damage.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epiderme/metabolismo , Células Epidérmicas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Matriz Extracelular/metabolismo
16.
Proc Natl Acad Sci U S A ; 106(5): 1457-61, 2009 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19164535

RESUMO

Wounding of epidermal layers triggers multiple coordinated responses to damage. We show here that the Caenorhabditis elegans ortholog of the tumor suppressor death-associated protein kinase, dapk-1, acts as a previously undescribed negative regulator of barrier repair and innate immune responses to wounding. Loss of DAPK-1 function results in constitutive formation of scar-like structures in the cuticle, and up-regulation of innate immune responses to damage. Overexpression of DAPK-1 represses innate immune responses to needle wounding. Up-regulation of innate immune responses in dapk-1 requires the TIR-1/p38 signal transduction pathway; loss of function in this pathway synergizes with dapk-1 to drastically reduce adult lifespan. Our results reveal a previously undescribed function for the DAPK tumor suppressor family in regulation of epithelial damage responses.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Caenorhabditis elegans/imunologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Associadas com Morte Celular , Imunidade Inata , Microscopia Eletrônica , Mutação , Transdução de Sinais
17.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-35224461

RESUMO

Fungal infection triggers the induction of antimicrobial peptide (AMP) genes in the epidermis (Pujol et al, 2008). We previously showed that this effect is suppressed by the mitochondrial unfolded protein response (UPRmt), which can be activated by knockdown of select genes including the mitochondrial metalloprotease spg-7 (Zugasti et al, 2016). Here, we confirm that RNAi against spg-7 triggers the UPRmt and blocks AMP induction during infection, whereas infection itself does not trigger the UPRmt. ATFS-1 is a key factor in the UPRmt, mediating much of the associated transcriptional response. We find that, surprisingly, ATFS-1 is not required for the suppression of AMP induction provoked by spg-7(RNAi). These data show that the mitochondrial dysfunction that blocks the immune response upon infection or wounding is independent of ATFS-1.

18.
Curr Biol ; 18(7): 481-9, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18394898

RESUMO

BACKGROUND: In many animals, the epidermis is in permanent contact with the environment and represents a first line of defense against pathogens and injury. Infection of the nematode Caenorhabditis elegans by the natural fungal pathogen Drechmeria coniospora induces the expression in the epidermis of antimicrobial peptide (AMP) genes such as nlp-29. Here, we tested the hypothesis that injury might also alter AMP gene expression and sought to characterize the mechanisms that regulate the innate immune response. RESULTS: Injury induces a wound-healing response in C. elegans that includes induction of nlp-29 in the epidermis. We find that a conserved p38-MAP kinase cascade is required in the epidermis for the response to both infection and wounding. Through a forward genetic screen, we isolated mutants that failed to induce nlp-29 expression after D. coniospora infection. We identify a kinase, NIPI-3, related to human Tribbles homolog 1, that is likely to act upstream of the MAPKK SEK-1. We find NIPI-3 is required only for nlp-29 induction after infection and not after wounding. CONCLUSIONS: Our results show that the C. elegans epidermis actively responds to wounding and infection via distinct pathways that converge on a conserved signaling cassette that controls the expression of the AMP gene nlp-29. A comparison between these results and MAP kinase signaling in yeast gives insights into the possible origin and evolution of innate immunity.


Assuntos
Caenorhabditis elegans/imunologia , Epiderme/imunologia , Imunidade Inata/fisiologia , Infecções/imunologia , Cicatrização/fisiologia , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Infecções/metabolismo , Dados de Sequência Molecular , Neuropeptídeos/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
MicroPubl Biol ; 20212021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33543000

RESUMO

If the cuticle acts as a protective barrier against environmental insults, several pathogens have developed strategies that use it as a way to infect C. elegans. The fungus Drechmeria coniospora produces spores that attach to the cuticle, before hyphae invade the body. Mutants with an altered surface coat, the outermost layer of the cuticle, including bus-2, bus-4, bus-12 and bus-17 show increased adhesion of fungal spores (Rouger et al, 2014; Zugasti et al, 2016). We unexpectedly found that D. coniospora spores attach unusually densely around the mouth of unc-119 mutants. Interestingly, this phenotype is not rescued by the C. briggsae unc-119 construct that is conventionally used to rescue neuronal unc-119 phenotypes.

20.
MicroPubl Biol ; 20212021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34056565

RESUMO

Skin infection with the fungus Drechmeria coniospora leads to a transcriptional response in the worm epidermis. This involves an increased expression of a group of antimicrobial peptide (AMP) genes including those in the nlp-29 and cnc-2 clusters. The major pathways leading to the expression of these AMP genes have been well characterized and converge on the STAT transcription factor STA-2. We reported previously that expression in the epidermis of a constitutively active (gain of function, gf) form of the Gα protein GPA-12 (GPA-12gf) recapitulates much of the response to infection. To reveal parallel pathways activated by infection, we focus here on an effector gene that is not induced by GPA-12gf. This gene, ifas-1, encodes a protein with a fascin domain, associated with actin binding. Its induction upon fungal infection does not require sta-2. A transcriptional reporter revealed induction in the epidermis of ifas-1 by infection and wounding. Thus, ifas-1 represents part of a previously unexplored aspect of the innate immune response to infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA