Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511536

RESUMO

BACKGROUND: Let-7 is a tumor suppressor microRNA targeting the KRAS lung oncogene. Let-7a downregulation is reversible during the early stages of lung carcinogenesis but is irreversible in cancer cells. The aim of this study is to shed light on the relationship between oncogene (KRAS) mutation and let-7a downregulation in cigarette smoke (CS)-induced lung carcinogenesis. METHODS: A total of 184 strain H Swiss albino mice were either unexposed (control) or exposed to CS for 2 weeks (short CS) or 8 months (long CS). After 8 months, the lungs were individually collected. The following end points have been evaluated: (a) DNA methylation of the let-7a gene promoter by bisulphite-PCR and pyrosequencing; (b) let-7a expression by qPCR; (c) KRAS mutation by DNA pyrosequencing; (d) cancer incidence by histopathological examination. RESULTS: let-7a expression decreased by 8.3% in the mice exposed to CS for two weeks (CS short) and by 33.4% (p ≤ 0.01) in the mice exposed to CS for 8 months (CS long). No significant difference was detected in the rate of let-7a-promoter methylation between the Sham-exposed mice (55.1%) and the CS short-(53%) or CS long (51%)-exposed mice. The percentage of G/T transversions in KRAS codons 12 and 13 increased from 2.3% (Sham) to 6.4% in CS short- and to 11.5% in CS long-exposed mice. Cancer incidence increased significantly in the CS long-exposed mice (11%) as compared to both the Sham (4%) and the CS short-exposed (2%) mice. In the CS long-exposed mice, the correlation between let-7a expression and the number of KRAS mutations was positive (R = +0.5506) in the cancer-free mice and negative (R = -0.5568) in the cancer-bearing mice. CONCLUSIONS: The effects of CS-induced mutations in KRAS are neutralized by the high expression of let-7a in cancer-free mice (positive correlation) but not in cancer-bearing mice where an irreversible let-7a downregulation occurs (negative correlation). This result provides evidence that both genetic (high load of KRAS mutation) and epigenetic alterations (let-7a irreversible downregulation) are required to produce lung cancer in CS-exposed organisms.


Assuntos
Fumar Cigarros , Neoplasias Pulmonares , MicroRNAs , Camundongos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Regulação para Baixo/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/genética , Mutação , Carcinogênese
2.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203322

RESUMO

BACKGROUND: In space, the reduction or loss of the gravity vector greatly affects the interaction between cells. Since the beginning of the space age, microgravity has been identified as an informative tool in biomedicine, including cancer research. The A549 cell line is a hypotriploid human alveolar basal epithelial cell line widely used as a model for lung adenocarcinoma. Microgravity has been reported to interfere with mitochondrial activity, energy metabolism, cell vitality and proliferation, chemosensitivity, invasion and morphology of cells and organelles in various biological systems. Concerning lung cancer, several studies have reported the ability of microgravity to modulate the carcinogenic and metastatic process. To investigate these processes, A549 cells were exposed to simulated microgravity (µG) for different time points. METHODS: We performed cell cycle and proliferation assays, ultrastructural analysis of mitochondria architecture, as well as a global analysis of miRNA modulated under µG conditions. RESULTS: The exposure of A549 cells to microgravity is accompanied by the generation of polynucleated cells, cell cycle imbalance, growth inhibition, and gross morphological abnormalities, the most evident are highly damaged mitochondria. Global miRNA analysis defined a pool of miRNAs associated with µG solicitation mainly involved in cell cycle regulation, apoptosis, and stress response. To our knowledge, this is the first global miRNA analysis of A549 exposed to microgravity reported. Despite these results, it is not possible to draw any conclusion concerning the ability of µG to interfere with the cancerogenic or the metastatic processes in A549 cells. CONCLUSIONS: Our results provide evidence that mitochondria are strongly sensitive to µG. We suggest that mitochondria damage might in turn trigger miRNA modulation related to cell cycle imbalance.


Assuntos
MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Células A549 , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Humanos
3.
Carcinogenesis ; 41(1): 91-99, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31562745

RESUMO

Chronic inflammation plays a crucial role in the carcinogenesis process and, in particular, in smoking-related carcinogenesis. Therefore, anti-inflammatory agents provide an interesting perspective in the prevention of smoking-associated cancers. Among nonsteroidal anti-inflammatory drugs (NSAIDs), licofelone is a triple inhibitor of both cyclooxygenases (COX-1 and COX-2) and of 5-lipooxygenase (5-LOX) that has shown some encouraging results in cancer prevention models. We previously showed that the dietary administration of licofelone, starting after weanling, to Swiss H mice exposed for 4 months to mainstream cigarette smoke since birth attenuated preneoplastic lesions of inflammatory nature in both lung and urinary tract, and had some effects on the yield of lung tumors at 7.5 months of age. The present study aimed at evaluating the early modulation by licofelone of pulmonary DNA and RNA alterations either in smoke-free or smoke-exposed H mice after 10 weeks of exposure. Licofelone protected the mice from the smoke-induced loss of body weight and significantly attenuated smoke-induced nucleotide alterations by decreasing the levels of bulky DNA adducts and 8-hydroxy-2'-deoxyguanosine in mouse lung. Moreover, the drug counteracted dysregulation by smoke of several pulmonary microRNAs involved in stress response, inflammation, apoptosis, and oncogene suppression. However, even in smoke-free mice administration of the drug had significant effects on a broad panel of microRNAs and, as assessed in a subset of mice used in a parallel cancer chemoprevention study, licofelone even enhanced the smoke-induced systemic genotoxic damage after 4 months of exposure. Therefore, caution should be paid when administering licofelone to smokers for long periods.


Assuntos
Anticarcinógenos/administração & dosagem , Dano ao DNA/efeitos dos fármacos , Inflamação/tratamento farmacológico , Neoplasias Pulmonares/prevenção & controle , Pirróis/administração & dosagem , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Anticarcinógenos/toxicidade , Araquidonato 5-Lipoxigenase/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Adutos de DNA/imunologia , Adutos de DNA/metabolismo , Modelos Animais de Doenças , Esquema de Medicação , Feminino , Humanos , Inflamação/etiologia , Inflamação/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/imunologia , MicroRNAs/metabolismo , Pirróis/toxicidade , Fatores de Tempo , Testes de Toxicidade Subcrônica
4.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245099

RESUMO

Radon is the number one cause of lung cancer in non-smokers. microRNA expression in human bronchial epithelium cells is altered by radon, with particular reference to upregulation of miR-16, miR-15, miR-23, miR-19, miR-125, and downregulation of let-7, miR-194, miR-373, miR-124, miR-146, miR-369, and miR-652. These alterations alter cell cycle, oxidative stress, inflammation, oncogene suppression, and malignant transformation. Also DNA methylation is altered as a consequence of miR-29 modification induced by radon. Indeed miR-29 targets DNA methyltransferases causing inhibition of CpG sites methylation. Massive microRNA dysregulation occurs in the lung due to radon expose and is functionally related with the resulting lung damage. However, in humans this massive lung microRNA alterations only barely reflect onto blood microRNAs. Indeed, blood miR-19 was not found altered in radon-exposed subjects. Thus, microRNAs are massively dysregulated in experimental models of radon lung carcinogenesis. In humans these events are initially adaptive being aimed at inhibiting neoplastic transformation. Only in case of long-term exposure to radon, microRNA alterations lead towards cancer development. Accordingly, it is difficult in human to establish a microRNA signature reflecting radon exposure. Additional studies are required to understand the role of microRNAs in pathogenesis of radon-induced lung cancer.


Assuntos
Monitoramento Biológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Radônio/metabolismo , Animais , Epigênese Genética , Humanos , Neoplasias Pulmonares/epidemiologia , MicroRNAs/metabolismo , Exposição à Radiação/efeitos adversos
5.
Int J Mol Sci ; 21(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992730

RESUMO

The exposure of living organisms to environmental stress triggers defensive responses resulting in the activation of protective processes. Whenever the exposure occurs at low doses, defensive effects overwhelm the adverse effects of the exposure; this adaptive situation is referred to as "hormesis". Environmental, physical, and nutritional hormetins lead to the stimulation and strengthening of the maintenance and repair systems in cells and tissues. Exercise, heat, and irradiation are examples of physical hormetins, which activate heat shock-, DNA repair-, and anti-oxidative-stress responses. The health promoting effect of many bio-actives in fruits and vegetables can be seen as the effect of mildly toxic compounds triggering this adaptive stimulus. Numerous studies indicate that living organisms possess the ability to adapt to adverse environmental conditions, as exemplified by the fact that DNA damage and gene expression profiling in populations living in the environment with high levels of air pollution do not correspond to the concentrations of pollutants. The molecular mechanisms of the hormetic response include modulation of (a) transcription factor Nrf2 activating the synthesis of glutathione and the subsequent protection of the cell; (b) DNA methylation; and (c) microRNA. These findings provide evidence that hormesis is a toxicological event, occurring at low exposure doses to environmental stressors, having the benefit for the maintenance of a healthy status.


Assuntos
Adaptação Fisiológica , Epigênese Genética , Hormese , Estresse Fisiológico , Animais , Dano ao DNA , Regulação da Expressão Gênica , Humanos , Estresse Oxidativo
6.
Carcinogenesis ; 36(3): 368-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25653234

RESUMO

Lung cancer is a leading cause of death in developed countries. Although smoking cessation is a primary strategy for preventing lung cancer, former smokers remain at high risk of cancer. Accordingly, there is a need to increase the efficacy of lung cancer prevention. Poor bioavailability is the main factor limiting the efficacy of chemopreventive agents. The aim of this study was to increase the efficacy of cancer chemopreventive agents by using lipid nanoparticles (NPs) as a carrier. This study evaluated the ability of lipid NPs to modify the pharmacodynamics of chemopreventive agents including N-acetyl-L-cysteine, phenethyl isothiocyanate and resveratrol (RES). The chemopreventive efficacy of these drugs was determined by evaluating their abilities to counteract cytotoxic damage (DNA fragmentation) induced by cigarette smoke condensate (CSC) and to activate protective apoptosis (annexin-V cytofluorimetric staining) in bronchial epithelial cells both in vitro and in ex vivo experiment in mice. NPs decreased the toxicity of RES and increased its ability to counteract CSC cytotoxicity. NPs significantly increased the ability of phenethyl isothiocyanate to attenuate CSC-induced DNA fragmentation at the highest tested dose. In contrast, this potentiating effect was observed at all tested doses of RES, NPs dramatically increasing RES-induced apoptosis in CSC-treated cells. These results provide evidence that NPs are highly effective at increasing the efficacy of lipophilic drugs (RES) but are not effective towards hydrophilic agents (N-acetyl-L-cysteine), which already possess remarkable bioavailability. Intermediate effects were observed for phenethyl isothiocyanate. These findings are relevant to the identification of cancer chemopreventive agents that would benefit from lipid NP delivery.


Assuntos
Anticarcinógenos/farmacocinética , Nanopartículas , Fumar/efeitos adversos , Acetilcisteína/administração & dosagem , Acetilcisteína/farmacocinética , Acetilcisteína/farmacologia , Animais , Anticarcinógenos/administração & dosagem , Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Brônquicas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Isotiocianatos/administração & dosagem , Isotiocianatos/farmacocinética , Isotiocianatos/farmacologia , Camundongos Endogâmicos , Resveratrol , Estilbenos/administração & dosagem , Estilbenos/farmacocinética , Estilbenos/farmacologia , Poluição por Fumaça de Tabaco
7.
J Cell Physiol ; 230(3): 510-25, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25216121

RESUMO

Primary open angle glaucoma is a multi-tissue disease that targets, in an ascending order, the trabecular meshwork, the optic nerve head, the lateral geniculate nuclei, and the visual cortex. Oxidative stress and vascular damage play major roles in triggering apoptotic cell loss in these tissues. Molecular alterations occurring in the ocular anterior chamber during the early course of glaucoma trigger this cell loss. These molecular events are mainly of endogenous origin and related to the long-term accumulation of oxidative damages arising from mitochondrial failure and endothelial dysfunction. This situation results in decreased antioxidant defences in aqueous humour and apoptosis activation in trabecular meshwork cells as triggered by severe mitochondrial damage altering tissue function and integrity. The presence of neural proteins in glaucomatous aqueous humour indicate that a molecular interconnection exists between the anterior and the posterior chamber tissues. Trabecular meshwork and lamina cribrosa share a common neuro-ectodermal embryological, which contribute to explain the interconnection between anterior and the posterior chamber during glaucoma pathogenesis. During glaucoma, proteins deriving from the damage occurring in endothelial trabecular meshwork cells are released into aqueous humour. Accordingly, aqueous humour composition is characterised in glaucomatous patients by the presence of proteins deriving from apoptosis activation, mitochondrial damage, loss of intercellular connections, antioxidant decrease. Many questions remain unanswered, but molecular events illuminate TM damage and indicate that trabecular cell protection plays a role in the treatment and prevention of glaucoma.


Assuntos
Glaucoma de Ângulo Aberto/patologia , Nervo Óptico/patologia , Estresse Oxidativo , Malha Trabecular/patologia , Antioxidantes/metabolismo , Apoptose , Dano ao DNA , Olho/patologia , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Pressão Intraocular , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Nervo Óptico/metabolismo
8.
Pathogens ; 13(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38535587

RESUMO

The possible future emergence of new SARS-CoV-2 virus variants pushes the development of new chemoprophylaxis protocols complementary to the unspecific and specific immune-prophylaxis measures currently used. The SARS-CoV-2 virus is particularly sensitive to oxidation, due to the relevant positive electrical charge of its spike protein used as a ligand for target cells. The present study evaluated the safety and efficacy of a new oxidant preparation, liquid hyperoxygen (IOL), to neutralize the SARS-CoV-2 virus. IOL was incubated with throat swabs containing a human-type virus. The samples were then incubated with cells expressing the ACE2 receptor and, therefore, very sensitive to SARS-CoV-2 infection. The ability to neutralize SARS-CoV-2 was determined by assessing the amount of viral nucleic acid inside cells by PCR. The results obtained indicate that IOL, even at considerable dilutions, is capable, after incubation times of less than 30 min and even equal to 5 min, of completely inhibiting SARS-CoV-2 infection. This inhibitory effect has been shown to be due to the oxidizing capacity of the IOL. This oxidizing capacity is exerted towards the virus but does not damage eukaryotic cells either in the in vitro or in vivo skin models. Obtained results indicate that the use of IOL, a hydrophilic liquid mixture saturated with highly reactive oxygen and nitrogen species, is a new powerful, safe, and effective tool for preventing possible future outbreaks of the COVID-19 disease.

9.
Ann Med ; 56(1): 2370568, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38920120

RESUMO

OBJECTIVE: Lynch syndrome (LS) is a hereditary condition associated with an increased risk of colorectal and endometrial cancer. This study aimed to assess the knowledge, attitudes, and beliefs of women with LS regarding combined hormonal contraceptive (CHC) use compared to a control group of healthy women. METHODS: Pre-menopausal women with LS (n = 43) and an age-matched control group of healthy women (n = 128) participated in this prospective, cross-sectional study (NCT05909410). Participants completed an electronic questionnaire evaluating perceptions of CHC use and its impact on various cancers, medical conditions, and symptoms. Statistical analysis compared responses between the two groups, with reported p-values. RESULTS: Women with LS were less likely to use CHCs compared to the control group (p = 0.03) and had a more negative perception of CHCs' impact on colorectal cancer (p = 0.023) and endometrial cancer (p = 0.028). Limited knowledge was observed in both groups regarding the protective effects of CHCs against colorectal and ovarian cancer. Perceptions of CHC use and its impact on symptoms and chronic diseases did not significantly differ between the groups (p > 0.05). CHC use was not associated with greater awareness of the protective effect against colorectal (p = 0.89) and endometrial cancer (p = 0.47), but it was associated with a desire for contraception (OR 21.25; 95% CI 1.16 to 388.21; p = 0.039). CONCLUSION: This study highlights contrasting perceptions of CHCs and their implications in oncology between women with LS and healthy women. Tailored counselling and support strategies are crucial for empowering women with LS to make informed decisions about their gynaecologic health.


This study illuminates divergent perceptions of combined hormonal contraceptives and their oncological implications between women with Lynch syndrome and healthy women.Tailored counseling and supportive strategies are essential for empowering women with Lynch syndrome to make informed decisions regarding their gynecologic health.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Feminino , Neoplasias Colorretais Hereditárias sem Polipose/psicologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Adulto , Estudos Transversais , Estudos Prospectivos , Pessoa de Meia-Idade , Inquéritos e Questionários , Neoplasias do Endométrio/psicologia , Medição de Risco , Anticoncepcionais Orais Combinados/efeitos adversos , Estudos de Casos e Controles , Percepção , Anticoncepcionais Orais Hormonais/efeitos adversos
10.
Front Public Health ; 12: 1326453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500723

RESUMO

Introduction: Coastal seawater pollution poses a public health risk due to the potential ingestion of contaminated water during recreational activities. Wastewater-based epidemiology has revealed the abundant presence of SARS-CoV-2 in seawater emitted from wastewater outlets. The objective of this research was to investigate the impact of seawater on SARS-CoV-2 infectivity to assess the safety of recreational activities in seawater. Methods: Wild SARS-CoV-2 was collected from oral swabs of COVID-19 affected patients and incubated for up to 90 min using the following solutions: (a) standard physiological solution (control), (b) reconstructed seawater (3.5% NaCl), and (c) authentic seawater (3.8%). Samples were then exposed to two different host systems: (a) Vero E6 cells expressing the ACE2 SARS-CoV-2 receptor and (b) 3D multi-tissue organoids reconstructing the human intestine. The presence of intracellular virus inside the host systems was determined using plaque assay, quantitative real-time PCR (qPCR), and transmission electron microscopy. Results: Ultrastructural examination of Vero E6 cells revealed the presence of virus particles at the cell surface and in replicative compartments inside cells treated with seawater and/or reconstituted water only for samples incubated up to 2 min. After a 90-min incubation, the presence of the virus and its infectivity in Vero E6 cells was reduced by 90%. Ultrastructural analysis performed in 3D epi-intestinal tissue did not reveal intact viral particles or infection signs, despite the presence of viral nucleic acid detected by qPCR. Indeed, viral genes (Orf1ab and N) were found in the intestinal luminal epithelium but not in the enteric capillaries. These findings suggest that the intestinal tissue is not a preferential entry site for SARS-CoV-2 in the human body. Additionally, the presence of hypertonic saline solution did not increase the susceptibility of the intestinal epithelium to virus penetration; rather, it neutralized its infectivity. Conclusion: Our results indicate that engaging in recreational activities in a seawater environment does not pose a significant risk for COVID-19 infection, despite the possible presence of viral nucleic acid deriving from degraded and fragmented viruses.


Assuntos
COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , Saúde Pública , Água do Mar , Água , Permeabilidade
11.
J Pers Med ; 13(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37240889

RESUMO

Ferroptosis is a cell death pathway triggered by an imbalance between the production of oxidants and antioxidants, which plays an emerging role in tumorigenesis. It is mainly regulated at three different levels including iron metabolism, the antioxidant response, and lipid metabolism. Epigenetic dysregulation is a "hallmark" of human cancer, with nearly half of all human cancers harboring mutations in epigenetic regulators such as microRNA. While being the crucial player in controlling gene expression at the mRNA level, microRNAs have recently been shown to modulate cancer growth and development via the ferroptosis pathway. In this scenario, some miRNAs have a function in upregulating, while others play a role in inhibiting ferroptosis activity. The investigation of validated targets using the miRBase, miRTarBase, and miRecords platforms identified 13 genes that appeared enriched for iron metabolism, lipid peroxidation, and antioxidant defense; all are recognized contributors of tumoral suppression or progression phenotypes. This review summarizes and discuss the mechanism by which ferroptosis is initiated through an imbalance in the three pathways, the potential function of microRNAs in the control of this process, and a description of the treatments that have been shown to have an impact on the ferroptosis in cancer along with potential novel effects.

12.
Cancers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686579

RESUMO

BACKGROUND: Oncolytic viruses (OVs) have been utilized since 1990s for targeted cancer treatment. Our study examined the Measles-Mumps-Rubella (MMR) vaccine's cancer-killing potency against Glioblastoma (GBM), a therapy-resistant, aggressive cancer type. METHODOLOGY: We used GBM cell lines, primary GBM cells, and normal mice microglial cells, to assess the MMR vaccine's efficacy through cell viability, cell cycle analysis, intracellular viral load via RT-PCR, and Transmission Electron Microscopy (TEM). RESULTS: After 72 h of MMR treatment, GBM cell lines and primary GBM cells exhibited significant viability reduction compared to untreated cells. Conversely, normal microglial cells showed only minor changes in viability and morphology. Intracellular viral load tests indicated GBM cells' increased sensitivity to MMR viruses compared to normal cells. The cell cycle study also revealed measles and mumps viruses' crucial role in cytopathic effects, with the rubella virus causing cell cycle arrest. CONCLUSION: Herein the reported results demonstrate the anti-cancer activity of the MMR vaccine against GBM cells. Accordingly, the MMR vaccine warrants further study as a potential new tool for GBM therapy and relapse prevention. Therapeutic potential of the MMR vaccine has been found to be promising in earlier studies as well.

13.
J Pers Med ; 13(11)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003914

RESUMO

Asbestos is a known carcinogen; however, the influence of chrysotile asbestos on the development of tumor-related diseases remains a subject of intense debate within the scientific community. To analyze the effect of asbestos, we conducted a study using the MRC5 cell line. We were able to demonstrate that chrysotile asbestos stimulated the production of reactive oxygen species (ROS), leading to cell death and DNA damage in the MRC5 cell line, using various techniques such as ROS measurement, comet assay, MTT assay, and qPCR. In addition, we found that chrysotile asbestos treatment significantly increased extracellular mitochondrial DNA levels in the culture medium and induced significant changes in the expression profile of several miRNAs, which was the first of its kind. Thus, our research highlights the importance of studying the effects of chrysotile asbestos on human health and reveals multiple adverse effects of chrysotile asbestos.

14.
J Pers Med ; 13(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36983713

RESUMO

Human papillomavirus (HPV) is causatively associated with cervical cancer, the fourth most common malignant disease of women worldwide: (1) The aim of the proposed study is to implement routine diagnostics of HPV precancerous cervical lesions by introducing new molecular diagnostic tools. (2) Methods: This is a retrospective cohort study with a total of twenty-two formalin-fixed paraffin-embedded (FFPE) cervical samples of various sample type (nine biopsy and thirteen conization) each patient had a previous abnormal results of pap test or HPV DNA test. Genotyping, viral load and co-infections were determined. For each patient, the individual expression of 2549 microRNAs were evaluated by microarray and qPCR. (3) Results: Our data demonstrates that the microRNAs were commonly expressed in tissues biopsies. miR 4485-5p, miR4485-3p and miR-4497 were highly down-regulated in tissue biopsies with HPV precancerous cervical lesions. (4) Conclusions: the introduction of a microRNA analysis panel can improve early diagnosis, understand the nature of the lesion and, consequently, improve the clinical management of patients with HPV precancerous cervical lesions.

15.
Transl Cancer Res ; 12(10): 2923-2931, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969362

RESUMO

Background: Human papillomavirus (HPV) can cause various gynecological diseases, create a long-term inflammatory immune microenvironment, and induce the occurrence of cervical tumors. However, the prevalence of HPV is species-specific in different eras or in different countries and regions. This paper aimed to investigate the characteristics of HPV infection in the Xuhui District, Shanghai City, China. Methods: We collected HPV data from 6,760 female testers, focusing on the younger population for data analysis. We focused more on the HPV subtypes to which young women were susceptible, performed t-Distributed Stochastic Neighbor Embedding (TSNE) analysis to screen for characteristic subtypes, and compared the prevalent subtypes lacking effective vaccine protection. Results: HPV infection exhibited a trend of affecting a younger population, and eight subtypes were more likely to occur in young people. HPV43, 51, 53, and 59 showed a higher incidence and lacked vaccine protection. We performed TSNE dimensionality reduction analysis to organize the HPV data. The results indicated that HPV16, 18, and 51 are characteristic subtypes in the younger population. The Thinprep cytologic test (TCT) also revealed that the infection with HPV43, 51, 53, and 59 also triggers significant pathological phenotypes. Conclusions: HPV51 is a subtype that occurs more frequently in young women, can induce a variety of significant pathological features, and lacks effective vaccine protection. This study inspires us to take measures to deal with HPV rejuvenation and conduct research on vaccines for specific HPV subtypes.

16.
J Pers Med ; 12(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35330502

RESUMO

Exposure to environmental contaminants may lead to changes in the expression of microRNAs (miRNAs), resulting in several health effects [...].

17.
Artigo em Inglês | MEDLINE | ID: mdl-36078301

RESUMO

Particulate matter (PM) pollution is one of the major public health problems worldwide, given the high mortality attributable to exposure to PM pollution and the high pathogenicity that is found above all in the respiratory, cardiovascular, and neurological systems. The main sources of PM pollution are the daily use of fuels (wood, coal, organic residues) in appliances without emissions abatement systems, industrial emissions, and vehicular traffic. This review aims to investigate the causes of PM pollution and classify the different types of dust based on their size. The health effects of exposure to PM will also be discussed. Particular attention is paid to the measurement method, which is unsuitable in the risk assessment process, as the evaluation of the average PM compared to the evaluation of PM with punctual monitoring significantly underestimates the health risk induced by the achievement of high PM values, even for limited periods of time.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Carvão Mineral , Poeira , Monitoramento Ambiental/métodos , Poluição Ambiental , Material Particulado/análise , Material Particulado/toxicidade , Emissões de Veículos/análise
18.
J Pers Med ; 12(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35207665

RESUMO

Epigenetic alterations are a driving force of the carcinogenesis process. MicroRNAs play a role in silencing mutated oncogenes, thus defending the cell against the adverse consequences of genotoxic damages induced by environmental pollutants. These processes have been well investigated in lungs; however, although skin is directly exposed to a great variety of environmental pollutants, more research is needed to better understand the effect on cutaneous tissue. Therefore, we investigated microRNA alteration in human skin biopsies exposed to diesel fumes, ozone, and UV light for over 24 h of exposure. UV and ozone-induced microRNA alteration right after exposure, while the peak of their deregulations induced by diesel fumes was reached only at the end of the 24 h. Diesel fumes mainly altered microRNAs involved in the carcinogenesis process, ozone in apoptosis, and UV in DNA repair. Accordingly, each tested pollutant induced a specific pattern of microRNA alteration in skin related to the intrinsic mechanisms activated by the specific pollutant. These alterations, over a short time basis, reflect adaptive events aimed at defending the tissue against damages. Conversely, whenever environmental exposure lasts for a long time, the irreversible alteration of the microRNA machinery results in epigenetic damage contributing to the pathogenesis of inflammation, dysplasia, and cancer induced by environmental pollutants.

19.
Artigo em Inglês | MEDLINE | ID: mdl-35565154

RESUMO

Bulky DNA adducts are a combined sign of aromatic chemical exposure, as well as an individual's ability to metabolically activate carcinogens and repair DNA damage. The present study aims to investigate the association between PM exposure and DNA adducts in blood cells, in a population of 196 adults with an unhealthy BMI (≥25). For each subject, a DNA sample was obtained for quantification of DNA adducts by sensitive32P post-labelling methods. Individual PM10 exposure was derived from daily mean concentrations measured by single monitors in the study area and then assigned to each subject by calculating the mean of the 30 days (short-term exposure), and of the 365 (long-term exposure) preceding enrolment. Multivariable linear regression models were used to study the association between PM10 and DNA adducts. The majority of analysed samples had bulky DNA adducts, with an average value of 3.7 ± 1.6 (mean ± SD). Overall, the findings of the linear univariate and multiple linear regression showed an inverse association between long-term PM10 exposure and adduct levels; this unexpected result might be since the population consists of subjects with an unhealthy BMI, which might show an atypical reaction to airborne urban pollutants; a hermetic response which happens when small amounts of pollutants are present. Pollutants can linger for a long time in the adipose tissue of obese persons, contributing to an increase in oxidative DNA damage, inflammation, and thrombosis when exposure is sustained.


Assuntos
Adutos de DNA , Poluentes Ambientais , Adulto , Células Sanguíneas , Índice de Massa Corporal , Poeira/análise , Poluentes Ambientais/análise , Humanos , População Urbana
20.
Cancers (Basel) ; 14(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35267482

RESUMO

BACKGROUND: Cancer tissue is characterized by low oxygen availability triggering neo angiogenesis and metastatisation. Accordingly, oxidation is a possible strategy for counteracting cancer progression and relapses. Previous studies used ozone gas, administered by invasive methods, both in experimental animals and clinical studies, transiently decreasing cancer growth. This study evaluated the effect of ozonized oils (administered either topically or orally) on cancer, exploring triggered molecular mechanisms. METHODS: In vitro, in lung and glioblastoma cancer cells, ozonized oils having a high ozonide content suppressed cancer cell viability by triggering mitochondrial damage, intracellular calcium release, and apoptosis. In vivo, a total of 115 cancer patients (age 58 ± 14 years; 44 males, 71 females) were treated with ozonized oil as complementary therapy in addition to standard chemo/radio therapeutic regimens for up to 4 years. RESULTS: Cancer diagnoses were brain glioblastoma, pancreas adenocarcinoma, skin epithelioma, lung cancer (small and non-small cell lung cancer), colon adenocarcinoma, breast cancer, prostate adenocarcinoma. Survival rate was significantly improved in cancer patients receiving HOO as integrative therapy as compared with those receiving standard treatment only. CONCLUSIONS: These results indicate that ozonized oils at high ozonide may represent an innovation in complementary cancer therapy worthy of further clinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA