Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(26): 8403-8427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35333666

RESUMO

Beta vulgaris, also known as Beetroot, is a member of a family of Chenopodiaceae and is widely used as a natural food colorant. It gets its distinctive color due to nitrogen-containing water-soluble pigments betalains. Beetroot is an exquisite cradle of nutrients, including proteins, sucrose, carbohydrates, vitamins (B complex and vitamin C), minerals, fiber. They also contain an appreciable amount of phenolic compounds and antioxidants such as coumarins, carotenoids, sesquiterpenoids, triterpenes, flavonoids (astragalin, tiliroside, rhamnocitrin, kaempferol, rhamnetin). Recent studies evidenced that beetroot consumption had favorable physiological benefits, leading to improved cardiovascular diseases, hypertension, diabetes, cancer, hepatic steatosis, liver damage, etc. This review gives insights into developing beetroot as a potential and novel ingredient for versatile food applications and the latest research conducted worldwide. The phytochemical diversity of beetroot makes them potential sources of nutraceutical compounds from which functional foods can be obtained. The article aimed to comprehensively collate some of the vital information published on beetroot incurred in the agri-food sector and a comprehensive review detailing the potentiality of tapping bioactive compounds in the entire agriculture-based food sector.


Assuntos
Antioxidantes , Beta vulgaris , Antioxidantes/química , Ácido Ascórbico , Beta vulgaris/química , Betalaínas/metabolismo , Verduras , Vitaminas , Humanos
2.
Crit Rev Food Sci Nutr ; : 1-31, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36861223

RESUMO

The worldwide challenges related to food sustainability are presently more critical than ever before due to the severe consequences of climate change, outbreak of epidemics, and wars. Many consumers are shifting their dietary habits toward consuming more plant-based foods, such as plant milk analogs (PMA) for health, sustainability, and well-being reasons. The PMA market is anticipated to reach US$38 billion within 2024, making them the largest segment in plant-based foods. Nevertheless, using plant matrices to produce PMA has numerous limitations, including, among others, low stability and short shelf life. This review addresses the main obstacles facing quality and safety of PMA formula. Moreover, this literature overview discusses the emerging approaches, e.g., pulsed electric field (PEF), cold atmospheric plasma (CAP), ultrasound (US), ultra-high-pressure homogenization (UHPH), ultraviolet C (UVC) irradiation, ozone (O3), and hurdle technology used in PMA formulations to overcome their common challenges. These emerging technologies have a vast potential at the lab scale to improve physicochemical characteristics, increase stability and extend the shelf-life, decrease food additives, increase nutritional and organoleptic qualities of the end product. Although the PMA fabrication on a large scale using these technologies can be expected in the near future to formulate novel food products that can offer green alternatives to conventional dairy products, further development is still needed for wider commercial applications.

3.
Compr Rev Food Sci Food Saf ; 21(2): 1958-1978, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35080794

RESUMO

According to the Food and Agriculture Organization of United Nations reports, approximately half of the total harvested fruits and vegetables vanish before they reach the end consumer due to their perishable nature. Enzymatic browning is one of the most common problems faced by fruit and vegetable processing. The perishability of fruits and vegetables is contributed by the various browning enzymes (polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase) and ripening or cell wall degrading enzyme (pectin methyl-esterase). In contrast, antioxidant enzymes (superoxide dismutase and catalase) assist in reversing the damage caused by reactive oxygen species or free radicals. The cold plasma technique has emerged as a novel, economic, and environmentally friendly approach that reduces the expression of ripening and browning enzymes while increasing the activity of antioxidant enzymes; microorganisms are significantly inhibited, therefore improving the shelf life of fruits and vegetables. This review narrates the mechanism and principle involved in the use of cold plasma technique as a nonthermal agent and its application in impeding the activity of browning and ripening enzymes and increasing the expression of antioxidant enzymes for improving the shelf life and quality of fresh fruits and vegetables and preventing spoilage and pathogenic germs from growing. An overview of hurdles and sustainability advantages of cold plasma technology is presented.


Assuntos
Gases em Plasma , Verduras , Antioxidantes , Parede Celular , Frutas , Gases em Plasma/farmacologia
4.
Food Res Int ; 187: 114390, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763652

RESUMO

In light of the commendable advantages inherent in natural polymers such as biocompatibility, biodegradability, and cost-effectiveness, researchers are actively engaged in the development of biopolymer-based biodegradable food packaging films (BFPF). However, a notable limitation is that most biopolymers lack intrinsic antimicrobial activity, thereby restricting their efficacy in food preservation. To address this challenge, various active substances with antibacterial properties have been explored as additives to BFPF. Among these, ε-polylysine has garnered significant attention in BFPF applications owing to its outstanding antibacterial properties. This study provides a brief overview of the synthesis method and chemical properties of ε-polylysine, and comprehensively examines its impact as an additive on the properties of BFPF derived from diverse biopolymers, including polysaccharides, proteins, aliphatic polyesters, etc. Furthermore, the practical applications of various BFPF functionalized with ε-polylysine in different food preservation scenarios are summarized. The findings underscore that ε-polylysine, functioning as an antibacterial agent, not only directly enhances the antimicrobial activity of BFPF but also serves as a cross-linking agent, interacting with biopolymer molecules to influence the physical and mechanical properties of BFPF, thereby enhancing their efficacy in food preservation.


Assuntos
Antibacterianos , Embalagem de Alimentos , Conservação de Alimentos , Polilisina , Polilisina/química , Embalagem de Alimentos/métodos , Biopolímeros/química , Conservação de Alimentos/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Filmes Comestíveis
5.
Polymers (Basel) ; 15(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38231896

RESUMO

Smart polymeric films and coatings represent a significant step forward in packaging technology [...].

6.
Food Res Int ; 164: 112310, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36737904

RESUMO

Millets are small-seeded crops which have been well adopted globally owing to their high concentration of macro and micronutrients such as protein, dietary fibre, essential fatty acids, minerals and vitamins. Considering their climate resilience and potential role in nutritional and health security, the year 2023 has been declared as 'International Year of Millets' by the United Nations. Cereals being the major nutrient vehicle for a majority population, and proteins being the second most abundant nutrient in millets, these grains can be a suitable alternative for plant-based proteins. Therefore, this review was written with an aim to succinctly provide an overview of the available literature take on the characterization, processing and applications of millet-based proteins. This information would play an important role in realizing the research gap restricting the utilization of complete potential of millet proteins. This can be further used by researchers and food industries for understanding the scope of millet proteins as an ingredient for novel food product development.


Assuntos
Grão Comestível , Milhetes , Produtos Agrícolas , Nutrientes , Minerais , Proteínas de Plantas
7.
Polymers (Basel) ; 14(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215741

RESUMO

Due to their complete non-biodegradability, current food packages have resulted in major environmental issues. Today's smart consumer is looking for alternatives that are environmentally friendly, durable, recyclable, and naturally rather than synthetically derived. It is a well-established fact that complete replacement with environmentally friendly packaging materials is unattainable, and bio-based plastics should be the future of the food packaging industry. Natural biopolymers and nanotechnological interventions allow the creation of new, high-performance, light-weight, and environmentally friendly composite materials, which can replace non-biodegradable plastic packaging materials. This review summarizes the recent advancements in smart biogenic packaging, focusing on the shift from conventional to natural packaging, properties of various biogenic packaging materials, and the amalgamation of technologies, such as nanotechnology and encapsulation; to develop active and intelligent biogenic systems, such as the use of biosensors in food packaging. Lastly, challenges and opportunities in biogenic packaging are described, for their application in sustainable food packing systems.

8.
Foods ; 11(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36230145

RESUMO

Lotus seed starch was cross-linked using sodium trimetaphosphate (STMP) in varying amounts (1, 3, and 5%), and its rheological, pasting, thermal, and physicochemical properties were investigated. These cross-linked lotus seed starches (CL-LS-1, CL-LS-3, CL-LS-5) were also used to produce films (CL-LSFs), which were then examined for their mechanical characteristics, water vapor permeability, moisture content, opacity, thickness, and water solubility. After cross-linking, the solubility, amylose content, and swelling power of all the starch samples decreased. Cross-linking resulted in an increased pasting temperature, while peak viscosity (PV) decreased, with CL-LS-5 exhibiting the lowest peak viscosity (1640.22 MPa·s). In comparison to native starch, the thermal characteristics of CL-LS demonstrated greater gelatinization temperatures (To, Tp, Tc) and gelatinization enthalpy (ΔHgel). The gelatinization enthalpy of CL-LS varied between 152.70 and 214.16 J/g, while for native LS the value was 177.91 J/g. Lower moisture content, water solubility, and water vapor permeability were observed in the CL-LSFs. However, the cross-linking modification did not produce much effect on the film thickness. The highest tensile strength (12.52 MPa) and lowest elongation at break (26.11%) were found in CL-LSF-5. Thus, the starch films' barrier and mechanical qualities were enhanced by cross-linking.

9.
Int J Biol Macromol ; 203: 350-360, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35104472

RESUMO

In the current study, starch-based active nanocomposite films reinforced with cellulosic nanocrystals (CNCs) of Kudzu were developed as an alternative option to existing biodegradable plastic packaging. Firstly, Kudzu CNCs were prepared by subjecting Kudzu fibers to the processes such as depolymerization followed by bleaching, acid hydrolysis, and mechanical dispersion. Further, nanocomposite films were formulated by blending pearl millet starch (PMS) and glycerol (30%) with different Kudzu CNCs compositions (0-7 wt%) using the solution casting process. The prepared PMS/Kudzu CNCs nanocomposite films were analyzed for their morphological (SEM and TEM), thermal (TGA and DSC), structural (FTIR), mechanical (tensile strength (TS), elongation at break and young modulus), and water barrier properties. The PMS/Kudzu CNCs films possessed improved crystallinity, heat and moisture-barrier properties, TS, and young-modulus after reinforcement. The optimum reinforcer concentration of CNCs was 5%. The Kudzu CNCs reinforced starch film offers a promising candidate for developing biodegradable films.


Assuntos
Nanocompostos , Nanopartículas , Pueraria , Celulose/química , Nanocompostos/química , Nanopartículas/química , Amido/química , Resistência à Tração
10.
Carbohydr Polym ; 287: 119265, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35422280

RESUMO

Native starches are modified to overcome the shortcoming, including retrogradation, syneresis, and low water-holding potential, which limit their industrial applications. The enzymatic modification includes designing a starch with a new structure. The molecular mass, branch chain-length distribution, and amylose/amylopectin ratio can be altered by enzymatic reactions when the enzymes react with gelatinized starch. The enzymatic modification directly affects the properties of the modified starch, including in freeze-thaw stability of gels and retardation of retrogradation during storage. Various enzymatic modifications of starch have been attempted for novel applications to the food industry as food ingredients, the enhancement of product quality, and the improvement of the efficiency of food processing. This review article addresses the key enzymes used for starch modifications, their mechanism of action, functionality and discusses new challenges and opportunities for effective modification. Also, the current review will give a critical snapshot of the applications for starch modifications in food industries.


Assuntos
Amilopectina , Amido , Amilopectina/química , Amilose/química , Manipulação de Alimentos , Géis/química , Amido/química
11.
J Texture Stud ; 53(6): 834-843, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34910831

RESUMO

The by-products obtained from orange and cucumber industries, such as pomace and peel, are usually discarded after primary processing. In this study, orange pomace and cucumber peel were microwave dried (180 W for 40 min) to prepare powders and incorporated at varying levels (5%-20%) to prepare tricolor pasta. The prepared pasta was evaluated for its nutraceutical, cooking, textural, and sensory characteristics. The viscoelastic behavior of orange pomace (OPP) and cucumber peel (CPP) powder enriched pasta dough was also analyzed. The elastic modulus (G') and viscous modulus (G″) of dough increased with the incorporation of the higher proportion of pomace and peel powder. The total dietary fiber in pasta incorporated with OPP increased from 10.30% to 20.19%, while it was increased to 24.91% upon the incorporation of CPP. These powders also contributed to the natural orange and green color of pasta. The antioxidant activity of OPP pasta increased from 10.64% to 31.9% and 10.64% to 20.29% in CPP (at a 20% level). Total phenolic content, carotenoid content, and chlorophyll content of OPP and CPP enriched pasta were determined, which progressively increased with increased levels of both the powders. The firmness of OPP increased from 0.29 to 1.54 N and 0.29 to 1.87 N in CPP at their highest level (20%) of addition. Therefore, orange pomace and cucumber peel waste from industries can be efficiently used to prepare pasta with improved nutritional characteristics.


Assuntos
Citrus sinensis , Cucumis sativus , Pós , Antioxidantes
12.
Food Res Int ; 158: 111556, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840248

RESUMO

Beetroot (Beta vulgaris) is the most well-known and commonly cultivated fruit from the Chenopodiaceae family. Beetroot is a rich source of nutrients including vitamins (B complex and C), minerals, fibre, proteins, and a variety of bioactive phenolic substances, which are chiefly composed of betalains, and other components possessing antioxidant activity, such as coumarins, carotenoids, sesquiterpenoids, triterpenes, and flavonoids (astragalin, tiliroside, rhamnocitrin, kaempferol, rhamnetin). Beetroot and its value-added products provide a variety of health advantages and may help prevent and manage various ailments and diseases due to bioactive components. Beetroot's phytochemical diversity makes them potential sources of nutraceutical chemicals that can be used to build functional foods. Pharmacologically, beetroot has the potential to be an antioxidant, antimicrobial, anticancerous, hypocholesterolemic, and anti-inflammatory agent. In a comprehensive analysis, this review first provides an overview of the bioactive compounds present in beetroot and its parts, followed by a specific description of the current evidence on this bioactive potential of beetroot and its parts, highlighting the biochemical mechanisms involved. Additionally, the factors affecting the concentration and activity of the beetroot bioactives and the best possible method to conserve its bioactivity has also been discussed in this review.


Assuntos
Beta vulgaris , Antioxidantes/análise , Beta vulgaris/química , Betalaínas/análise , Betalaínas/farmacologia , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Verduras
13.
Food Res Int ; 162(Pt B): 112068, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36461323

RESUMO

In recent years, the rapid increase in the global population, the challenges associated with climate change, and the emergence of new pandemics have all become major threats to food security worldwide. Consequently, innovative solutions are urgently needed to address the current challenges and enhance food sustainability. Green technologies have gained significant attention for many food applications, while the technologies of the fourth industrial revolution (Industry 4.0) are reshaping different production and consumption sectors, such as food and agriculture. In this review, a general overview of green and Industry 4.0 technologies from a food perspective will be provided. Connections between green food technologies (e.g., green preservation, processing, extraction, and analysis) and Industry 4.0 enablers (e.g., artificial intelligence, big data, smart sensors, robotics, blockchain, and the Internet of Things) and the Sustainable Development Goals (SDGs) will be identified and explained. Green and Industry 4.0 technologies are both rapidly becoming a valuable part of meeting the SDGs. These technologies demonstrate high potential to foster ecological and digital transitions of food systems, delivering societal, economic, and environmental outcomes. A range of green technologies has already provided innovative solutions for major food system transformations, while the application of digital technologies and other Industry 4.0 technological innovations is still limited in the food sector. It is therefore expected that more green and digital solutions will be adopted in the coming years, harnessing their full potential to achieve a healthier, smarter, more sustainable and more resilient food future.


Assuntos
Inteligência Artificial , Desenvolvimento Sustentável , Alimentos , Agricultura , Tecnologia de Alimentos
14.
Int J Biol Macromol ; 183: 1807-1817, 2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34051254

RESUMO

During processing of mango (Mangifera indica) into beverages, squashes and jellies, by-products such as peel and kernel are generated. The higher generation volume of mango-seed makes it cheaper and readily available material for extraction of starch. The current article addresses the mango-seed as potential source of starch over the conventional sources. The starch isolation, its composition structural morphology along with the various physicochemical properties are well discussed. Various modifications for improving the functionality of mango-seed starch (MSS) are comprehensively investigated based on the previous findings. Digestibility profile and glycaemic index of MSS reflected the presence of more resistant starch compared to other conventional starches; making it suitable ingredient for managing diabetes. The structure of mango seed starch can be easily manipulated using biological, chemical and physical methods for improving its application in the foods. Possible utilization of the MSS at large scale will improve the economic viability of the mango processing industries.


Assuntos
Mangifera/química , Amido/química , Amido/isolamento & purificação , Sementes/química , Solubilidade , Temperatura
15.
Foods ; 10(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34681331

RESUMO

Edible packaging is a swiftly emerging art of science in which edible biopolymers like lipids, polysaccharides, proteins, resins, etc., and other consumable constituents extracted from various non-conventional sources are used alone or imbibed together. Edible packaging with antimicrobial components had led to the development of the hypothesis of active packaging which safeguards the quality of foods as well as health of consumers. Natural antimicrobial agents (NAMAs) like essential oils from spices, bioactive compounds derived from vegetables and fruits, animal and microorganism derived compounds having antimicrobial properties can be potentially used in edible films as superior replcement for synthetic compounds, thus serving the purpose of quality and heath. Most of the natural antimicrobial agents enjoy GRAS status and are safer than their synthetic counterparts. This review focuses on updated literature on the sources, properties and potential applications of NAMAs in the food industry. This review also analyzes the biodegradability and biocompatibility and edibility properties of NAMAs enriched films and it can be concluded that NAMAs are better substitutes but affect the organoleptic as well as the mechanical properties of the films. Despite many advantages, the inclusion of NAMAs into the films needs to be investigated more to quantify the inhibitory concentration without affecting the properties of films and exerting potential antimicrobial action to ensure food safety.

16.
Front Nutr ; 8: 823148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35187025

RESUMO

Due to its good dietary role, barley has attracted a growing amount of interest for the manufacture of functional foods in recent years. In barley, a number of bioactive components, including as phenolic compounds, have been discovered, and barley extrudates could be used to formulate various processed foods, including ready-to-eat cereals, baby, and pet foods and support nutritionally balanced diets. This study was conducted to investigate the effect of extrusion processing on resistant starch (RS), glycemic index (GI), and antioxidant compounds of barley flour. The L * and ΔE values of barley flours decreased significantly (p < 0.05) after extrusion is done at 150 and 180°C. The a * and b * values, however, increased after extrusion. Extrusion increased antioxidant activity (AOA), metal chelating activity (MCA), and ABTS+ scavenging activity, whereas total phenolic content (TPC) and total flavonoids content (TFC) decreased. Barley extrudates at 150 and 180°C showed decreased TPC by 16.4-34.2% and 23.4-38.1%. Moreover, improved RS and reduced GI values were recorded for barley extrudates as compared to barley non-extrudates. Therefore, extrusion of barley could be an alternative to produce pregelatinized barley flour with improved RS low GI values and improved antioxidant potential.

17.
Foods ; 10(7)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34359479

RESUMO

Pearl millet is an underutilized and drought-resistant crop that is mainly used for animal feed and fodder. Starch (70%) is the main constituent of the pearl millet grain; this starch may be a good substitute for major sources of starch such as corn, rice, potatoes, etc. Starch was isolated from pearl millet grains and modified with different physical treatments (heat-moisture (HMT), microwave (MT), and sonication treatment (ST)). The amylose content and swelling capacity of the starches decreased after HMT and MT, while the reverse was observed for ST. Transition temperatures (onset (To), peak of gelatinization (Tp), and conclusion (Tc)) of the starches ranged from 62.92-76.16 °C, 67.95-81.05 °C, and 73.78-84.50 °C, respectively. After modification (HMT, MT, and ST), an increase in the transition temperatures was observed. Peak-viscosity of the native starch was observed to be 995 mPa.s., which was higher than the starch modified with HMT and MT. Rheological characteristics (storage modulus (G') and loss modulus (G'')) of the native and modified starches differed from 1039 to 1730 Pa and 83 to 94 Pa; the largest value was found for starch treated with ST and HMT. SEM showed cracks and holes on granule surfaces after HMT as well as MT starch granules. Films were prepared using both native and modified starches. The modification of the starches with different treatments had a significant impact on the moisture, transmittance, and solubility of films. The findings of this study will provide a better understanding of the functional properties of pearl millet starch for its possible utilization in film formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA