Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(33): 16222-16227, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358637

RESUMO

In arid regions, groundwater is a vital resource that can also provide a long-term record of the regional water cycle. However, the use of groundwater as a paleoclimate proxy has been limited by the complex hydrology and the lack of appropriate chronometers to determine the recharge time without complication. Applying 81Kr, a long-lived radioisotope tracer, we investigate the paleohydroclimate and subsurface water storage properties of the Nubian Sandstone Aquifer in the Negev Desert, Israel. Based on the spatial distributions of stable isotopes and the abundance of 81Kr, we resolve subsurface mixing and identify two distinct moisture sources of the recharge: one recent (<38 ky ago) from the Mediterranean and the other 361 ± 30 ky ago from the tropical Atlantic, both of which occurred under conditions of low orbital eccentricity comparable to that of the present. The recent recharge provided by the moisture from Mediterranean cyclones can be attributed to the southward shift of the storm track during the Last Glacial Maximum, and the earlier recharge can be attributed to moisture from the Atlantic delivered as tropical plumes under a climate colder than the present. Furthermore, the residence time of the latter reveals that tectonically active terrain can store groundwater for an unexpectedly long period, likely due to strongly attenuated groundwater flow across the fault zones. With this tracer, groundwater can now serve as a direct record of paleoprecipitation over land and of subsurface water storage from the mid-Pleistocene and onward.

2.
Environ Sci Technol ; 54(1): 158-165, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31760748

RESUMO

When groundwater-based drinking water supply becomes contaminated, the timing and source of contamination are obvious questions. However, contaminants often have diffuse sources and different contaminants may have different sources even in a single groundwater well, making these questions complicated to answer. Age dating of groundwater has been used to reconstruct contaminant travel times to wells; however, critics have highlighted that groundwater flow is often complex with mixing of groundwater of different ages. In drinking water wells, where water is typically abstracted from a large depth interval, such mixing is even more problematic. We present a way to overcome some of the obstacles in identifying the source and age of contaminants in drinking water wells by combining depth-specific sampling with age tracer modeling, particle tracking simulations, geological characterization, and contaminant properties. This multitool approach was applied to a drinking water well, where bentazon and dichlorprop contamination was found to have different pollutant sources and release histories, even though both pesticides can be associated with the same land use. Bentazon was derived from recent application to a golf course, while dichlorprop was derived from agricultural use more than 30 years ago. The advantages, limitations, and pitfalls of the proposed course of action are then further discussed.


Assuntos
Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Distribuição por Idade , Monitoramento Ambiental , Abastecimento de Água
3.
Proc Natl Acad Sci U S A ; 113(49): E7927-E7936, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872277

RESUMO

Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic ß-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.


Assuntos
Desnitrificação , Ecossistema , Metano/biossíntese , Microbiota , Enxofre/metabolismo , Processos Autotróficos , Carbono/metabolismo , Nitrogênio/metabolismo , África do Sul
4.
Proc Natl Acad Sci U S A ; 111(19): 6876-81, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24753606

RESUMO

We present successful (81)Kr-Kr radiometric dating of ancient polar ice. Krypton was extracted from the air bubbles in four ∼350-kg polar ice samples from Taylor Glacier in the McMurdo Dry Valleys, Antarctica, and dated using Atom Trap Trace Analysis (ATTA). The (81)Kr radiometric ages agree with independent age estimates obtained from stratigraphic dating techniques with a mean absolute age offset of 6 ± 2.5 ka. Our experimental methods and sampling strategy are validated by (i) (85)Kr and (39)Ar analyses that show the samples to be free of modern air contamination and (ii) air content measurements that show the ice did not experience gas loss. We estimate the error in the (81)Kr ages due to past geomagnetic variability to be below 3 ka. We show that ice from the previous interglacial period (Marine Isotope Stage 5e, 130-115 ka before present) can be found in abundance near the surface of Taylor Glacier. Our study paves the way for reliable radiometric dating of ancient ice in blue ice areas and margin sites where large samples are available, greatly enhancing their scientific value as archives of old ice and meteorites. At present, ATTA (81)Kr analysis requires a 40-80-kg ice sample; as sample requirements continue to decrease, (81)Kr dating of ice cores is a future possibility.


Assuntos
Mudança Climática , Camada de Gelo/química , Gelo/análise , Radioisótopos de Criptônio , Datação Radiométrica/métodos , Regiões Antárticas , Gases/análise , Datação Radiométrica/normas , Reprodutibilidade dos Testes
5.
Sci Total Environ ; 951: 175737, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39187079

RESUMO

Many efforts have been made to illuminate the nature of past hydroclimates in semi-arid and arid regions, where current and future shifts in water availability have enormous consequences on human subsistence. Deep desert aquifers, where groundwater is stored for prolonged periods, might serve as a direct record of major paleo-recharge events. To date, groundwater-based paleoclimate reconstructions have mainly focused on a relatively narrow timescale (up to ∼40 kyr), limited by the relatively short half-life of the widely used radiocarbon (5.73 kyr). Here we demonstrate the usage of deep regional aquifers in the arid southeastern Mediterranean as a hydroclimate archive for earlier Mid-to-Late Pleistocene epochs. State-of-the-art dating tools, primarily the 81Kr radioisotope (t1/2 = 229 kyr), were combined with other atmosphere-derived tracers to illuminate the impact of four distinguishable wetter episodes over the past 400 kyr, with differences in climatic conditions and paleo-recharge locations. Variations in stable water isotope composition suggest moisture transport from more proximal (Mediterranean) and distal (Atlantic) sources to different parts of the region at distinct times. Large variability in the computed noble gas-based recharge temperature (NGT), ranging ~15-30 °C, cannot be explained by climate variations solely, and points to different recharge pathways, including geothermal heating in the deep unsaturated zone and recharge from high-elevation (colder) regions. The obtained groundwater record complements and enhances the interpretation of other terrestrial archives in the arid region, including a contribution of valuable information regarding the moisture source origin as reflected in the deuterium-excess values, which is unattainable from the common practice analysis of calcitic cave deposits. We conclude that similar applications in other deep (hundred-m-order) regional groundwater systems (e.g., the Sahara desert aquifers) can significantly advance our understanding of long-term (up to 1 Myr) paleo-hydroclimate in arid regions, including places where no terrestrial remnants, such as cave, lake, and spring sediments, are available.

6.
Sci Total Environ ; 884: 163868, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37142013

RESUMO

Argon-37 (37Ar) and Argon-39 (39Ar) are used for groundwater dating on timescales from weeks to centuries. For both isotopes, the quantification of underground sources is essential to accurately infer water residence times from sampled dissolved activities. Subsurface production resulting from interactions with neutrons from the natural radioactivity in rocks and with primary cosmogenic neutrons has been known for a long time. More recently, the capture of slow negative muons and reactions with muon-induced neutrons were documented for 39Ar subsurface production in the context of underground particle detectors (e.g. for Dark Matter research). However, the contribution from these particles was never considered for groundwater dating applications. Here, we reevaluate the importance of all potential depth-related production channels at depth ranges relevant for 39Ar groundwater dating [0 - 200 meters below the surface (m.b.s)]. The production of radioargon by muon-induced processes is considered in this depth range for the first time. The uncertainty on the total depth-dependent production rate is estimated with Monte Carlo simulations assuming a uniform distribution of the parameter uncertainties. This work aims to provide a comprehensive framework for interpreting 39Ar activities in terms of groundwater residence times and for exposure age dating of rocks. The production of 37Ar is also addressed since this isotope is relevant as a proxy for 39Ar production, for the timing of river-groundwater exchanges, and in the context of on-site inspections (OSI) within the verification framework of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In this perspective, we provide an interactive web-based application for the calculation of 37Ar and 39Ar production rates in rocks.


Assuntos
Água Subterrânea
7.
Sci Total Environ ; 903: 166588, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37634724

RESUMO

Groundwater dating by radioactive cosmogenic tracers such as 39Ar relies on the decay rate from a known initial atmospheric activity (100%modern). Thereby, it is assumed that cosmogenic 39Ar production in the subsurface is negligible at depths below the water table and that contributions from natural rock radioactivity are minor or missing. Here we present 39Ar data from aquifers located in quaternary glacial sediments and tertiary limestones in Denmark, which unequivocally demonstrate that cosmogenic production can induce considerable age biases. 39Ar values larger than 100%modern are observed at relatively shallow groundwater depths in non-radiogenic rocks. These activities are compared to calculations based on previously assessed depth-dependent production rates in rocks and realistic estimates of the emanated fractions to the water phase. The water residence time distribution with depth, which was determined by numerical flow modeling and particle tracking, underpinned the significance of muon-induced 39Ar production. The short-lived isotope 37Ar is produced by similar processes as 39Ar and demonstrated its usefulness as an indicator of local underground production in an aquifer. The significance of cosmogenic underground production in other possible recharge scenarios was then assessed by explicitly simulating the radioargon accumulation and decay in a 2D synthetical numerical model. These simulations demonstrated that underground production is negligible when the water infiltrates freely in a porous aquifer. However, in the presence of a confining layer impeding the infiltration at shallow depths (<30 m), as is the case in our study site in Denmark for instance, over-modern 39Ar activities (>100%modern) may occur. The age concluded from the dissolved activities is then possibly biased towards young values. Special attention should thus be paid to the recharge rates when using 39Ar for dating groundwater. 37Ar activities provide complementary information about the strength and mechanisms of underground production.

8.
Environ Sci Technol ; 45(20): 8656-64, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21877757

RESUMO

For on-site inspections (OSI) under the Comprehensive Nuclear-Test-Ban Treaty (CTBT) measurement of the noble gas ³7Ar is considered an important technique. ³7Ar is produced underground by neutron activation of Calcium by the reaction 4°Ca(n,α)³7Ar. The naturally occurring equilibrium ³7Ar concentration balance in soil air is a function of an exponentially decreasing production rate from cosmic ray neutrons with increasing soil depth, diffusive transport in the soil air, and radioactive decay (T(1/2): 35 days). In this paper for the first time, measurements of natural ³7Ar activities in soil air are presented. The highest activities of ~100 mBq m⁻³ air are 2 orders of magnitude larger than in the atmosphere and are found in 1.5-2.5 m depth. At depths > 8 m ³7Ar activities are < 20 mBq m⁻³ air. After identifying the main ³7Ar production and gas transport factors the expected global activity range distribution of ³7Ar in shallow subsoil (0.7 m below the surface) was estimated. In high altitude soils, with large amounts of Calcium and with low gas permeability, ³7Ar activities may reach values up to 1 Bq m⁻³.


Assuntos
Ar/análise , Argônio/análise , Argônio/química , Solo/análise , Monitoramento Ambiental
9.
Sci Total Environ ; 762: 144106, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33373751

RESUMO

Measurements of the long-lived 81Kr and 36Cl radioisotopes in groundwater from the Negev Desert (Israel) were used to assess the 36Cl/Cl input ratios and Cl- contents for paleorecharge into the Nubian Sandstone Aquifer (NSA). The reconstructed Cl- content of the recharge flux was on the order of 300-400 mg/L. An initial 36Cl/Cl ratio of 50 × 10-15 was assessed for the groundwater replenishment in the Negev Desert since the late Pleistocene, in agreement with the 36Cl/Cl ratios in recent local rainwater. This is despite possible changes in the climatic conditions and the 36Cl production rates in the atmosphere over this timeframe. This similarity in values is explained by the major role played by the erosion and weathering of near-surface materials in the desert environment that dominate the hydrochemistry of rains, floods, and the consequent groundwater recharge. Spatial variation in the reconstructed initial 36Cl/Cl ratio is accounted for by the differences in the mineral aerosol sources for specific recharge areas of the NSA. Accordingly, regional variations in the 36Cl/Cl input in groundwater reservoirs surrounding the Mediterranean Sea indicate various processes that govern the 36Cl/Cl system. Finally, the results of this study highlight the great advantage of integrating 81Kr age information in evaluating the initial 36Cl/Cl and Cl- input, which is essential for the calibration of 36Cl radioisotope as an available long-term dating tool for a given basin.

10.
J Environ Radioact ; 222: 106346, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32892903

RESUMO

Early observations of the tritium (3H) activity in precipitation from Switzerland started in 1967 in Bern and a monitoring program with improved analytical techniques was carried out between 1971 and 2009. Between 2012 and 2015, we performed tritium analyses on daily precipitation samples from north-western Switzerland to better constrain the tritium variability. We also collected waters dripping inside Milandre Cave (Jura Mountains) with a 4-6 months' resolution in order to estimate the age of the drip water, which is mandatory to interpret the high-resolution speleothem (cave carbonate deposits) records. Over the monitoring period, the mean tritium concentration in the daily precipitation samples was approximately 8.7 ± 4.7 TU with distinct seasonality showing higher values in spring and summer (from April-May to August-September). The similarity in trends with the other cosmogenic radionuclide beryllium-7 (7Be) suggests that, for the study site, tritium in precipitation essentially originates from stratospheric input in spring. In winter, precipitation dynamics with increasing moisture originating from the Atlantic and diluted during transport contribute to low values close to the Atlantic background. In cave drip water, the depleted activity level of tritium indicates a relatively long percolation time from the surface to the cave of several years. A residual superimposed short tritium variability provides evidence for the occurrence of fast flowing water paths. The contribution from both components were quantified based on a two-component lumped parameter-mixing model. Finally, we show that tritium concentrations in cave drip water are linked to the moisture origin and atmospheric transport pathways.


Assuntos
Berílio , Monitoramento de Radiação , Radioisótopos , Trítio , Berílio/análise , Cavernas , Radioisótopos/análise , Suíça , Fatores de Tempo , Trítio/análise
11.
J Environ Radioact ; 205-206: 7-16, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31082675

RESUMO

For almost half a century weekly samples for the measurement of krypton-85 (85Kr) activity concentrations in surface air have been collected by the Bundesamt für Strahlenschutz (BfS), Germany. Sampling started at Freiburg (230m asl) in 1973, Mt Schauinsland (1205m asl) in 1976 and Mt Jungfraujoch in Switzerland (3454 asl) in 1990. Distinct maxima in the time series of atmospheric 85Kr activity concentration are caused by emissions from nuclear reprocessing plants in Europe, mainly the La Hague, France, and Sellafield, UK, reprocessing plants. Between 1970 and 1990 peak activity concentrations measured in winter along the Rhine Rift in Freiburg are often higher than at Mt Schauinsland, due to emissions from the operating pilot reprocessing plant in Karlsruhe - approximately 130 km to the north - and large-scale inversions that inhibit exchange of air masses within the Rhine Rift with those at higher altitudes. From the early 1990s onwards, after the shut-down of the pilot plant, differences between Freiburg and Schauinsland are much smaller. Activity concentrations measured at Jungfraujoch are generally lower and close to baseline levels, due to its location in the free troposphere. Weekly baseline and average 85Kr activity concentration in the atmosphere in Central Europe were modelled from almost 12,000 individual measurements at 11 stations. The baseline and average have continuously increased, interrupted by a relatively stable period between 2009 and the end of 2014 with a baseline activity concentration of about 1.39 Bq/m3. Depending on the geographical location and hydrological conditions, the modelled baseline or average 85Kr activity concentration time series can be used as input functions for the dating of young groundwater.


Assuntos
Poluentes Radioativos do Ar/análise , Água Subterrânea/análise , Radioisótopos de Criptônio/análise , Monitoramento de Radiação , Alemanha , Suíça
12.
J Environ Radioact ; 155-156: 89-96, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26939033

RESUMO

High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI.


Assuntos
Argônio/análise , Armas Nucleares , Monitoramento de Radiação , Radioisótopos/análise , Poluentes Radioativos do Solo/análise , Explosões , Modelos Teóricos , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA