Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
FASEB J ; 36(1): e22107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34939700

RESUMO

Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.


Assuntos
Barreira Hematoencefálica/imunologia , Colagenases/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Inibidores Teciduais de Metaloproteinases/imunologia , Animais , Anexina A1/farmacologia , Barreira Hematoencefálica/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Humanos , Masculino , Camundongos , Proteínas Recombinantes/farmacologia
2.
Proc Biol Sci ; 286(1904): 20190730, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31161905

RESUMO

In both cells and animals, cannibalism can transfer harmful substances from the consumed to the consumer. Macrophages are immune cells that consume their own dead via a process called cannibalistic efferocytosis. Macrophages that contain harmful substances are found at sites of chronic inflammation, yet the role of cannibalism in this context remains unexplored. Here we take mathematical and experimental approaches to study the relationship between cannibalistic efferocytosis and substance accumulation in macrophages. Through mathematical modelling, we deduce that substances which transfer between individuals through cannibalism will concentrate inside the population via a coalescence process. This prediction was confirmed for macrophage populations inside a closed system. We used image analysis of whole slide photomicrographs to measure both latex microbead and neutral lipid accumulation inside murine bone marrow-derived macrophages (104-[Formula: see text]) following their stimulation into an inflammatory state ex vivo. While the total number of phagocytosed beads remained constant, cell death reduced cell numbers and efferocytosis concentrated the beads among the surviving macrophages. As lipids are also conserved during efferocytosis, these cells accumulated lipid derived from the membranes of dead and consumed macrophages (becoming macrophage foam cells). Consequently, enhanced macrophage cell death increased the rate and extent of foam cell formation. Our results demonstrate that cannibalistic efferocytosis perpetuates exogenous (e.g. beads) and endogenous (e.g. lipids) substance accumulation inside macrophage populations. As such, cannibalism has similar detrimental consequences in both cells and animals.


Assuntos
Macrófagos/fisiologia , Fagocitose , Animais , Morte Celular , Células Cultivadas , Células Espumosas/citologia , Células Espumosas/metabolismo , Células Espumosas/fisiologia , Metabolismo dos Lipídeos , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos C57BL
3.
Diabetologia ; 61(2): 482-495, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29085990

RESUMO

AIMS/HYPOTHESIS: Microvascular complications in the heart and kidney are strongly associated with an overall rise in inflammation. Annexin A1 (ANXA1) is an endogenous anti-inflammatory molecule that limits and resolves inflammation. In this study, we have used a bedside to bench approach to investigate: (1) ANXA1 levels in individuals with type 1 diabetes; (2) the role of endogenous ANXA1 in nephropathy and cardiomyopathy in experimental type 1 diabetes; and (3) whether treatment with human recombinant ANXA1 attenuates nephropathy and cardiomyopathy in a murine model of type 1 diabetes. METHODS: ANXA1 was measured in plasma from individuals with type 1 diabetes with or without nephropathy and healthy donors. Experimental type 1 diabetes was induced in mice by injection of streptozotocin (STZ; 45 mg/kg i.v. per day for 5 consecutive days) in C57BL/6 or Anxa1 -/- mice. Diabetic mice were treated with human recombinant (hr)ANXA1 (1 µg, 100 µl, 50 mmol/l HEPES; 140 mmol/l NaCl; pH 7.4, i.p.) or vehicle (100 µl, 50 mmol/l HEPES; 140 mmol/l NaCl; pH 7.4, i.p.). RESULTS: Plasma levels of ANXA1 were elevated in individuals with type 1 diabetes with/without nephropathy compared with healthy individuals (66.0 ± 4.2/64.0 ± 4 ng/ml vs 35.9 ± 2.3 ng/ml; p < 0.05). Compared with diabetic wild-type (WT) mice, diabetic Anxa1 -/- mice exhibited a worse diabetic phenotype and developed more severe cardiac (ejection fraction; 76.1 ± 1.6% vs 49.9 ± 0.9%) and renal dysfunction (proteinuria; 89.3 ± 5.0 µg/mg vs 113.3 ± 5.5 µg/mg). Mechanistically, compared with non-diabetic WT mice, the degree of the phosphorylation of mitogen-activated protein kinases (MAPKs) p38, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) was significantly higher in non-diabetic Anxa1 -/- mice in both the heart and kidney, and was further enhanced after STZ-induced type 1 diabetes. Prophylactic treatment with hrANXA1 (weeks 1-13) attenuated both cardiac (ejection fraction; 54.0 ± 1.6% vs 72.4 ± 1.0%) and renal (proteinuria; 89.3 ± 5.0 µg/mg vs 53.1 ± 3.4 µg/mg) dysfunction associated with STZ-induced diabetes, while therapeutic administration of hrANXA1 (weeks 8-13), after significant cardiac and renal dysfunction had already developed, halted the further functional decline in cardiac and renal function seen in diabetic mice administered vehicle. In addition, administration of hrANXA1 attenuated the increase in phosphorylation of p38, JNK and ERK, and restored phosphorylation of Akt in diabetic mice. CONCLUSIONS/INTERPRETATION: Overall, these results demonstrate that ANXA1 plasma levels are elevated in individuals with type 1 diabetes independent of a significant impairment in renal function. Furthermore, in mouse models with STZ-induced type 1 diabetes, ANXA1 protects against cardiac and renal dysfunction by returning MAPK signalling to baseline and activating pro-survival pathways (Akt). We propose ANXA1 to be a potential therapeutic option for the control of comorbidities in type 1 diabetes.


Assuntos
Anexina A1/sangue , Diabetes Mellitus Tipo 1/sangue , Animais , Anexina A1/genética , Anexina A1/metabolismo , Western Blotting , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-akt , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Ann Surg ; 268(2): 348-356, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28288070

RESUMO

OBJECTIVE: To evaluate (1) levels of the host-defense/antimicrobial peptide LL-37 in patients with trauma and hemorrhagic shock (HS) and (2) the effects of a synthetic host-defense peptide; Pep19-4LF on multiple organ failure (MOF) associated with HS. BACKGROUND: HS is a common cause of death in severely injured patients. There is no specific therapy that reduces HS-associated MOF. METHODS: (1) LL-37 was measured in 47 trauma/HS patients admitted to an urban major trauma center. (2) Male Wistar rats were submitted to HS (90 min, target mean arterial pressure: 27-32 mm Hg) or sham operation. Rats were treated with Pep19-4LF [66 (n = 8) or 333 µg/kg ·â€Šh (n = 8)] or vehicle (n = 12) for 4 hours following resuscitation. RESULTS: Plasma LL-37 was 12-fold higher in patients with trauma/HS compared to healthy volunteers. HS rats treated with Pep19-4LF (high dose) had a higher mean arterial pressure at the end of the 4-hour resuscitation period (79 ±â€Š4 vs 54 ±â€Š5 mm Hg) and less renal dysfunction, liver injury, and lung inflammation than HS rats treated with vehicle. Pep19-4LF enhanced (kidney/liver) the phosphorylation of (1) protein kinase B and (2) endothelial nitric oxide synthase. Pep19-4LF attenuated the HS-induced (1) translocation of p65 from cytosol to nucleus, (2) phosphorylation of IκB kinase on Ser, and (3) phosphorylation of IκBα on Ser resulting in inhibition of nuclear factor kappa B and formation of proinflammatory cytokines. Pep19-4LF prevented the release of tumor necrosis factor alpha caused by heparan sulfate in human mononuclear cells by binding to this damage-associated molecular pattern. CONCLUSIONS: Trauma-associated HS results in release of LL-37. The synthetic host-defense/antimicrobial peptide Pep19-4LF attenuates the organ injury/dysfunction associated with HS.


Assuntos
Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/sangue , Insuficiência de Múltiplos Órgãos/prevenção & controle , Peptídeos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Choque Hemorrágico/tratamento farmacológico , Ferimentos e Lesões/complicações , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Terapia Combinada , Humanos , Masculino , Insuficiência de Múltiplos Órgãos/etiologia , Ratos , Ratos Wistar , Ressuscitação , Choque Hemorrágico/sangue , Choque Hemorrágico/complicações , Choque Hemorrágico/diagnóstico , Resultado do Tratamento , Catelicidinas
5.
J Am Soc Nephrol ; 28(1): 94-105, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27153924

RESUMO

Patients with CKD requiring dialysis have a higher risk of sepsis and a 100-fold higher mortality rate than the general population with sepsis. The severity of cardiac dysfunction predicts mortality in patients with sepsis. Here, we investigated the effect of preexisting CKD on cardiac function in mice with sepsis and whether inhibition of IκB kinase (IKK) reduces the cardiac dysfunction in CKD sepsis. Male C57BL/6 mice underwent 5/6 nephrectomy, and 8 weeks later, they were subjected to LPS (2 mg/kg) or sepsis by cecal ligation and puncture (CLP). Compared with sham operation, nephrectomy resulted in significant increases in urea and creatinine levels, a small (P<0.05) reduction in ejection fraction (echocardiography), and increases in the cardiac levels of phosphorylated IκBα, Akt, and extracellular signal-regulated kinase 1/2; nuclear translocation of the NF-κB subunit p65; and inducible nitric oxide synthase (iNOS) expression. When subjected to LPS or CLP, compared with sham-operated controls, CKD mice exhibited exacerbation of cardiac dysfunction and lung inflammation, greater increases in levels of plasma cytokines (TNF-α, IL-1ß, IL-6, and IL-10), and greater increases in the cardiac levels of phosphorylated IKKα/ß and IκBα, nuclear translocation of p65, and iNOS expression. Treatment of CKD mice with an IKK inhibitor (IKK 16; 1 mg/kg) 1 hour after CLP or LPS administration attenuated these effects. Thus, preexisting CKD aggravates the cardiac dysfunction caused by sepsis or endotoxemia in mice; this effect may be caused by increased cardiac NF-κB activation and iNOS expression.


Assuntos
Cardiopatias/enzimologia , Cardiopatias/prevenção & controle , Quinase I-kappa B/antagonistas & inibidores , Insuficiência Renal Crônica/enzimologia , Sepse/complicações , Animais , Cardiopatias/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência Renal Crônica/complicações
6.
Cells ; 13(11)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38891050

RESUMO

Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking and adoptive transfer experiments confirmed that monocytes undergo rapid phenotypic change as they exit the blood and give rise to monocyte-derived macrophages that persist during the resolution of inflammation. Single-cell transcriptomics revealed significant heterogeneity within the surface marker-defined CD11b+Ly6G-Ly6Chi monocyte populations within the blood and at the site of inflammation. We show that two major transcriptional reprogramming events occur during the initial six hours of Ly6Chi monocyte mobilisation, one in the blood priming monocytes for migration and a second at the site of inflammation. Pathway analysis revealed an important role for oxidative phosphorylation (OxPhos) during both these reprogramming events. Experimentally, we demonstrate that OxPhos via the intact mitochondrial electron transport chain is essential for murine and human monocyte chemotaxis. Moreover, OxPhos is needed for monocyte-to-macrophage differentiation and macrophage M(IL-4) polarisation. These new findings from transcriptional profiling open up the possibility that shifting monocyte metabolic capacity towards OxPhos could facilitate enhanced macrophage M2-like polarisation to aid inflammation resolution and tissue repair.


Assuntos
Antígenos Ly , Diferenciação Celular , Inflamação , Macrófagos , Monócitos , Fosforilação Oxidativa , Monócitos/metabolismo , Animais , Macrófagos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Humanos , Camundongos , Antígenos Ly/metabolismo , Quimiotaxia , Camundongos Endogâmicos C57BL , Peritonite/metabolismo , Peritonite/induzido quimicamente , Peritonite/patologia , Zimosan/farmacologia , Mitocôndrias/metabolismo , Reprogramação Celular
7.
Diabetes ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38193882

RESUMO

Bruton's tyrosine kinase (BTK) is a non-receptor bound kinase involved in pro-inflammatory signalling in activated macrophages, however, its role within adipose tissue macrophages remains unclear. We have demonstrated that BTK signalling regulates macrophage M2-like polarisation state by up-regulating subunits of mitochondrially encoded electron transport chain Complex I (ND4 and NDL4) and Complex IV (mt-CO1, mt-CO2 and mt-CO3) resulting in an enhanced rate of oxidative phosphorylation (OxPhos) in an NF-κB independent manner. Critically, BTK expression is elevated in adipose tissue macrophages from obese individuals with diabetes, while key mitochondrial genes (mtC01, mtC02 and mtC03) are decreased in inflammatory myeloid cells from obese individuals. Inhibition of BTK signalling either globally (Xid mice) or in myeloid cells (LysMCreBTK), or therapeutically (Acalabrutinib) protects HFD-fed mice from developing glycaemic dysregulation by improving signalling through the IRS1/Akt/GSK3ß pathway. The beneficial effects of acalabrutinib treatment are lost in macrophage ablated mice. Inhibition of BTK signalling in myeloid cells but not B-cells, induced a phenotypic switch in adipose tissue macrophages from a pro-inflammatory M1-state to a pro-resolution M2-like phenotype, by shifting macrophage metabolism towards OxPhos. This reduces both local and systemic inflammation and protected mice from the immunometabolic consequences of obesity. Therefore, in BTK we have identified a macrophage specific, druggable target that can regulate adipose tissue polarisation and cellular metabolism that can confer systematic benefit in metabolic syndrome.

8.
Front Immunol ; 13: 918636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874787

RESUMO

Current genetic tools designed to target macrophages in vivo often target cells from all myeloid lineages. Therefore, we sought to generate a novel transgenic mouse which has a tamoxifen inducible Cre-recombinase under the control of the human CD68 promoter (hCD68-CreERT2). To test the efficiency and specificity of the of Cre-recombinase activity we crossed the hCD68-CreERT2 mice with a loxP-flanked STOP cassette red fluorescent protein variant (tdTomato) mouse. We established that orally dosing mice with 2 mg of tamoxifen for 5 consecutive days followed by a 5-day induction period resulted in robust expression of tdTomato in CD11b+ F4/80+ tissue resident macrophages. Using this induction protocol, we demonstrated tdTomato expression within peritoneal, liver and spleen macrophages and blood Ly6Clow monocytes. Importantly there was limited or no inducible tdTomato expression within other myeloid cells (neutrophils, monocytes, dendritic cells and eosinophils), T cells (CD4+ and CD8+) and B cells (CD19+). We also demonstrated that the level of tdTomato expression can be used as a marker to identify different populations of peritoneal and liver macrophages. We next assessed the longevity of tdTomato expression in peritoneal macrophages, liver and splenic macrophages and demonstrated high levels of tdTomato expression as long as 6 weeks after the last tamoxifen dose. Importantly, hCD68-CreERT2 expression is more restricted than that of LysM-Cre which has significant expression in major myeloid cell types (monocytes and neutrophils). To demonstrate the utility of this novel macrophage-specific Cre driver line we demonstrated tdTomato expression in recruited CD11b+CD64+F4/80+ monocyte-derived macrophages within the atherosclerotic lesions of AAV8-mPCSK9 treated mice, with limited expression in recruited neutrophils. In developing this new hCD68-CreERT2 mouse we have a tool that allows us to target tissue resident macrophages, with the advantage of not targeting other myeloid cells namely neutrophils and inflammatory monocytes.


Assuntos
Integrases , Tamoxifeno , Animais , Humanos , Integrases/genética , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Tamoxifeno/farmacologia
9.
Br J Pharmacol ; 179(11): 2754-2770, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34897650

RESUMO

BACKGROUND AND PURPOSE: Bruton's TK (BTK) is a non-receptor kinase best known for its role in B lymphocyte development that is critical for proliferation and survival of leukaemic cells in B-cell malignancies. However, BTK is expressed in myeloid cells, particularly neutrophils, monocytes and macrophages where its inhibition has been reported to cause anti-inflammatory properties. EXPERIMENTAL APPROACH: We explored the role of BTK on migration of myeloid cells (neutrophils, monocytes and macrophages), in vitro using chemotaxis assays and in vivo using zymosan-induced peritonitis as model systems. KEY RESULTS: Using the zymosan-induced peritonitis model of sterile inflammation, we demonstrated that acute inhibition of BTK prior to zymosan challenge reduced phosphorylation of BTK in circulating neutrophils and monocytes. Moreover, pharmacological inhibition of BTK with ibrutinib specifically inhibited neutrophil and Ly6Chi monocytes, but not Ly6Clo monocyte recruitment to the peritoneum. X-linked immunodeficient (XID) mice, which have a point mutation in the Btk gene, had reduced neutrophil and monocyte recruitment to the peritoneum following zymosan challenge. Pharmacological or genetic inhibition of BTK signalling substantially reduced human monocyte and murine macrophage chemotaxis, to a range of clinically relevant chemoattractants (C5a and CCL2). We also demonstrated that inhibition of BTK in tissue resident macrophages significantly decreases chemokine secretion by reducing NF-κB activity and Akt signalling. CONCLUSION AND IMPLICATIONS: Our work has identified a new role of BTK in regulating myeloid cell recruitment via two mechanisms, reducing monocyte/macrophages' ability to undergo chemotaxis and reducing chemokine secretion, via reduced NF-κB and Akt activity in tissue resident macrophages.


Assuntos
Tirosina Quinase da Agamaglobulinemia , NF-kappa B , Peritonite , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Quimiocinas , Inflamação , Camundongos , Células Mieloides , Peritonite/induzido quimicamente , Proteínas Proto-Oncogênicas c-akt , Zimosan/farmacologia
10.
Front Immunol ; 12: 701275, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349763

RESUMO

Metabolic endotoxemia has been suggested to play a role in the pathophysiology of metaflammation, insulin-resistance and ultimately type-2 diabetes mellitus (T2DM). The role of endogenous antimicrobial peptides (AMPs), such as the cathelicidin LL-37, in T2DM is unknown. We report here for the first time that patients with T2DM compared to healthy volunteers have elevated plasma levels of LL-37. In a reverse-translational approach, we have investigated the effects of the AMP, peptide 19-2.5, in a murine model of high-fat diet (HFD)-induced insulin-resistance, steatohepatitis and T2DM. HFD-fed mice for 12 weeks caused obesity, an impairment in glycemic regulations, hypercholesterolemia, microalbuminuria and steatohepatitis, all of which were attenuated by Peptide 19-2.5. The liver steatosis caused by feeding mice a HFD resulted in the activation of nuclear factor kappa light chain enhancer of activated B cells (NF-ĸB) (phosphorylation of inhibitor of kappa beta kinase (IKK)α/ß, IκBα, translocation of p65 to the nucleus), expression of NF-ĸB-dependent protein inducible nitric oxide synthase (iNOS) and activation of the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome, all of which were reduced by Peptide 19-2.5. Feeding mice, a HFD also resulted in an enhanced expression of the lipid scavenger receptor cluster of differentiation 36 (CD36) secondary to activation of extracellular signal-regulated kinases (ERK)1/2, both of which were abolished by Peptide 19-2.5. Taken together, these results demonstrate that the AMP, Peptide 19-2.5 reduces insulin-resistance, steatohepatitis and proteinuria. These effects are, at least in part, due to prevention of the expression of CD36 and may provide further evidence for a role of metabolic endotoxemia in the pathogenesis of metaflammation and ultimately T2DM. The observed increase in the levels of the endogenous AMP LL-37 in patients with T2DM may serve to limit the severity of the disease.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Antimicrobianos/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Inflamação , Lipopolissacarídeos/antagonistas & inibidores , Animais , Dieta Hiperlipídica/efeitos adversos , Endotoxemia/etiologia , Endotoxemia/metabolismo , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Catelicidinas
11.
Front Immunol ; 11: 2080, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983159

RESUMO

The development of cardiac dysfunction caused by microbial infection predicts high mortality in sepsis patients. Specialized pro-resolving mediators (SPMs) mediate resolution of inflammation in many inflammatory diseases, and are differentially expressed in plasma of sepsis patients. Here, we investigated whether the levels of SPMs are altered in the murine septic heart following polymicrobial sepsis-induced cardiac dysfunction. Ten weeks-old male C57BL/6 mice were subjected to polymicrobial sepsis induced by cecal ligation and puncture (CLP), which is a clinically relevant sepsis model receiving analgesics, antibiotics, and fluid resuscitation. CLP caused a significant systolic dysfunction assessed by echocardiography. The hearts were subjected to LC-MS/MS based lipid mediator profiling. Many SPMs were significantly reduced in septic hearts, among which RvE1 had a ~93-fold reduction. Treatment of CLP mice with synthetic RvE1 (1 µg/mouse i.v.) at 1 h after CLP increased peritoneal macrophages number, particularly MHC II- macrophages. RvE1 reduced pro-inflammatory gene expression (interleukin-1ß, interleukin-6, and CCL2) in lipopolysaccharide-stimulated bone marrow-derived macrophages (BMDMs) in vitro. RvE1 attenuated cardiac dysfunction in septic mice and increased cardiac phosphorylated Akt; decreased cardiac phosphorylated IκB kinase α/ß, nuclear translocation of the NF-κB subunit p65, extracellular signal-regulated kinase 1/2, and c-Jun amino-terminal kinases 1/2. Most notably, RvE1 treatment reduced peritoneal bacterial load and promoted phagocytosis activity of BMDMs. In conclusion, cardiac SPMs, particularly RvE1, are substantially reduced in mice with polymicrobial sepsis. Delayed therapeutic administration of RvE1 to mice with polymicrobial sepsis attenuates the cardiac dysfunction through modulating immuno-inflammatory responses. In addition to the above effects, the ability to enhance bacterial clearance makes RvE1 an ideal therapeutic to reduce the sequalae of polymicrobial sepsis.


Assuntos
Ácido Eicosapentaenoico/análogos & derivados , Cardiopatias/etiologia , Sepse/complicações , Sepse/microbiologia , Animais , Carga Bacteriana/efeitos dos fármacos , Biomarcadores , Modelos Animais de Doenças , Ecocardiografia , Ácido Eicosapentaenoico/farmacologia , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Cardiopatias/diagnóstico , Cardiopatias/tratamento farmacológico , Cardiopatias/metabolismo , Testes de Função Cardíaca , Imunidade/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Prognóstico , Sepse/imunologia , Transdução de Sinais/efeitos dos fármacos
12.
Front Immunol ; 11: 581758, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162995

RESUMO

We previously reported the Bruton's tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib improve outcomes in a mouse model of polymicrobial sepsis. Now we show that genetic deficiency of the BTK gene alone in Xid mice confers protection against cardiac, renal, and liver injury in polymicrobial sepsis and reduces hyperimmune stimulation ("cytokine storm") induced by an overwhelming bacterial infection. Protection is due in part to enhanced bacterial phagocytosis in vivo, changes in lipid metabolism and decreased activation of NF-κB and the NLRP3 inflammasome. The inactivation of BTK leads to reduced innate immune cell recruitment and a phenotypic switch from M1 to M2 macrophages, aiding in the resolution of sepsis. We have also found that BTK expression in humans is increased in the blood of septic non-survivors, while lower expression is associated with survival from sepsis. Importantly no further reduction in organ damage, cytokine production, or changes in plasma metabolites is seen in Xid mice treated with the BTK inhibitor ibrutinib, demonstrating that the protective effects of BTK inhibitors in polymicrobial sepsis are mediated solely by inhibition of BTK and not by off-target effects of this class of drugs.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Insuficiência de Múltiplos Órgãos/metabolismo , Sepse/metabolismo , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/metabolismo , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Benzamidas/farmacologia , Modelos Animais de Doenças , Inflamassomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos CBA , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Fagocitose/efeitos dos fármacos , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Sepse/tratamento farmacológico , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/tratamento farmacológico
13.
Br J Pharmacol ; 177(19): 4416-4432, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32608058

RESUMO

BACKGROUND AND PURPOSE: There are no medications currently available to treat metabolic inflammation. Bruton's tyrosine kinase (BTK) is highly expressed in monocytes and macrophages and regulates NF-κB and NLRP3 inflammasome activity; both propagate metabolic inflammation in diet-induced obesity. EXPERIMENTAL APPROACH: Using an in vivo model of chronic inflammation, high-fat diet (HFD) feeding, in male C57BL/6J mice and in vitro assays in primary murine and human macrophages, we investigated if ibrutinib, an FDA approved BTK inhibitor, may represent a novel anti-inflammatory medication to treat metabolic inflammation. KEY RESULTS: HFD-feeding was associated with increased BTK expression and activation, which was significantly correlated with monocyte/macrophage accumulation in the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice inhibited the activation of BTK and reduced monocyte/macrophage recruitment to the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD-fed mice decreased the activation of NF-κB and the NLRP3 inflammasome. As a result, ibrutinib treated mice fed HFD had improved glycaemic control through restored signalling by the IRS-1/Akt/GSK-3ß pathway, protecting mice against the development of hepatosteatosis and proteinuria. We show that BTK regulates NF-κB and the NLRP3 inflammasome specifically in primary murine and human macrophages, the in vivo cellular target of ibrutinib. CONCLUSION AND IMPLICATIONS: We provide "proof of concept" evidence that BTK is a novel therapeutic target for the treatment of diet-induced metabolic inflammation and ibrutinib may be a candidate for drug repurposing as an anti-inflammatory agent for the treatment of metabolic inflammation in T2D and microvascular disease.


Assuntos
Inflamassomos , NF-kappa B , Animais , Glicogênio Sintase Quinase 3 beta , Inflamação/tratamento farmacológico , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR
14.
Front Immunol ; 10: 938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114582

RESUMO

Annexin-A1 (ANXA1) was first discovered in the early 1980's as a protein, which mediates (some of the) anti-inflammatory effects of glucocorticoids. Subsequently, the role of ANXA1 in inflammation has been extensively studied. The biology of ANXA1 is complex and it has many different roles in both health and disease. Its effects as a potent endogenous anti-inflammatory mediator are well-described in both acute and chronic inflammation and its role in activating the pro-resolution phase receptor, FPR2, has been described and is now being exploited for therapeutic benefit. In the present mini review, we will endeavor to give an overview of ANXA1 biology in relation to inflammation and functions that mediate pro-resolution that are independent of glucocorticoid induction. We will focus on the role of ANXA1 in diseases with a large inflammatory component focusing on diabetes and microvascular disease. Finally, we will explore the possibility of exploiting ANXA1 as a novel therapeutic target in diabetes and the treatment of microvascular disease.


Assuntos
Anexina A1/imunologia , Receptores de Formil Peptídeo/imunologia , Receptores de Lipoxinas/imunologia , Doenças Vasculares/imunologia , Doença de Addison/tratamento farmacológico , Doença de Addison/imunologia , Doença de Addison/patologia , Animais , Síndrome de Cushing/tratamento farmacológico , Síndrome de Cushing/imunologia , Síndrome de Cushing/patologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/imunologia , Diabetes Mellitus/patologia , Glucocorticoides/imunologia , Glucocorticoides/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/patologia
15.
ACS Chem Biol ; 14(9): 2055-2064, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31465201

RESUMO

GPR84 is an orphan G-protein-coupled receptor that is expressed on immune cells and implicated in several inflammatory diseases. The validation of GPR84 as a therapeutic target is hindered by the narrow range of available chemical tools and consequent poor understanding of GPR84 pathophysiology. Here we describe the discovery and characterization of DL-175, a potent, selective, and structurally novel GPR84 agonist and the first to display significantly biased signaling across GPR84-overexpressing cells, primary murine macrophages, and human U937 cells. By comparing DL-175 with reported GPR84 ligands, we show for the first time that biased GPR84 agonists have markedly different abilities to induce chemotaxis in human myeloid cells, while causing similar levels of phagocytosis enhancement. This work demonstrates that biased agonism at GPR84 enables the selective activation of functional responses in immune cells and delivers a high-quality chemical probe for further investigation.


Assuntos
Fatores Quimiotáticos/farmacologia , Óxidos N-Cíclicos/farmacologia , Macrófagos/efeitos dos fármacos , Piridinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Células CHO , Linhagem Celular Tumoral , Fatores Quimiotáticos/química , Cricetulus , Óxidos N-Cíclicos/química , Humanos , Camundongos , Estrutura Molecular , Fagocitose/efeitos dos fármacos , Piridinas/química , Relação Quantitativa Estrutura-Atividade , Transdução de Sinais/efeitos dos fármacos
16.
Front Immunol ; 10: 2129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552054

RESUMO

Sepsis is one of the most prevalent diseases in the world. The development of cardiac dysfunction in sepsis results in an increase of mortality. It is known that Bruton's tyrosine kinase (BTK) plays a role in toll-like receptor signaling and NLRP3 inflammasome activation, two key components in the pathophysiology of sepsis and sepsis-associated cardiac dysfunction. In this study we investigated whether pharmacological inhibition of BTK (ibrutinib 30 mg/kg and acalabrutinib 3 mg/kg) attenuates sepsis associated cardiac dysfunction in mice. 10-week old male C57BL/6 mice underwent CLP or sham surgery. One hour after surgery mice received either vehicle (5% DMSO + 30% cyclodextrin i.v.), ibrutinib (30 mg/kg i.v.), or acalabrutinib (3 mg/kg i.v.). Mice also received antibiotics and an analgesic at 6 and 18 h. After 24 h, cardiac function was assessed by echocardiography in vivo. Cardiac tissue underwent western blot analysis to determine the activation of BTK, NLRP3 inflammasome and NF-κB pathway. Serum analysis of 33 cytokines was conducted by a multiplex assay. When compared to sham-operated animals, mice subjected to CLP demonstrated a significant reduction in ejection fraction (EF), fractional shortening (FS), and fractional area change (FAC). The cardiac tissue from CLP mice showed significant increases of BTK, NF-κB, and NLRP3 inflammasome activation. CLP animals resulted in a significant increase of serum cytokines and chemokines (TNF-α, IL-6, IFN-γ, KC, eotaxin-1, eotaxin-2, IL-10, IL-4, CXCL10, and CXCL11). Delayed administration of ibrutinib and acalabrutinib attenuated the decline of EF, FS, and FAC caused by CLP and also reduced the activation of BTK, NF-κB, and NLRP3 inflammasome. Both ibrutinib and acalabrutinib significantly suppressed the release of cytokines and chemokines. Our study revealed that delayed intravenous administration of ibrutinib or acalabrutinib attenuated the cardiac dysfunction associated with sepsis by inhibiting BTK, reducing NF-κB activation and the activation of the inflammasome. Cytokines associated with sepsis were significantly reduced by both BTK inhibitors. Acalabrutinib is found to be more potent than ibrutinib and could potentially prove to be a novel therapeutic in sepsis. Thus, the FDA-approved BTK inhibitors ibrutinib and acalabrutinib may be repurposed for the use in sepsis.


Assuntos
Tirosina Quinase da Agamaglobulinemia/metabolismo , Cardiopatias/etiologia , Coração/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Sepse/complicações , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/efeitos dos fármacos , Tirosina Quinase da Agamaglobulinemia/imunologia , Animais , Benzamidas/farmacologia , Ceco , Modelos Animais de Doenças , Inflamassomos/efeitos dos fármacos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Ligadura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas , Punções , Pirazinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Sepse/imunologia , Sepse/metabolismo
17.
Front Immunol ; 10: 571, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972066

RESUMO

Annexin A1 (ANXA1) is an endogenously produced anti-inflammatory protein, which plays an important role in the pathophysiology of diseases associated with chronic inflammation. We demonstrate that patients with type-2 diabetes have increased plasma levels of ANXA1 when compared to normoglycemic subjects. Plasma ANXA1 positively correlated with fatty liver index and elevated plasma cholesterol in patients with type-2 diabetes, suggesting a link between aberrant lipid handling, and ANXA1. Using a murine model of high fat diet (HFD)-induced insulin resistance, we then investigated (a) the role of endogenous ANXA1 in the pathophysiology of HFD-induced insulin resistance using ANXA1-/- mice, and (b) the potential use of hrANXA1 as a new therapeutic approach for experimental diabetes and its microvascular complications. We demonstrate that: (1) ANXA1-/- mice fed a HFD have a more severe diabetic phenotype (e.g., more severe dyslipidemia, insulin resistance, hepatosteatosis, and proteinuria) compared to WT mice fed a HFD; (2) treatment of WT-mice fed a HFD with hrANXA1 attenuated the development of insulin resistance, hepatosteatosis and proteinuria. We demonstrate here for the first time that ANXA1-/- mice have constitutively activated RhoA. Interestingly, diabetic mice, which have reduced tissue expression of ANXA1, also have activated RhoA. Treatment of HFD-mice with hrANXA1 restored tissue levels of ANXA1 and inhibited RhoA activity, which, in turn, resulted in restoration of the activities of Akt, GSK-3ß and endothelial nitric oxide synthase (eNOS) secondary to re-sensitization of IRS-1 signaling. We further demonstrate in human hepatocytes that ANXA1 protects against excessive mitochondrial proton leak by activating FPR2 under hyperglycaemic conditions. In summary, our data suggest that (a) ANXA1 is a key regulator of RhoA activity, which restores IRS-1 signal transduction and (b) recombinant human ANXA1 may represent a novel candidate for the treatment of T2D and/or its complications.


Assuntos
Anexina A1/genética , Anexina A1/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Anexina A1/sangue , Colesterol/sangue , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Dieta Hiperlipídica/efeitos adversos , Dislipidemias/fisiopatologia , Fígado Gorduroso/sangue , Fígado Gorduroso/patologia , Humanos , Hiperglicemia/fisiopatologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/fisiopatologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo
18.
Front Immunol ; 9: 1419, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973940

RESUMO

GPR84 is a member of the metabolic G protein-coupled receptor family, and its expression has been described predominantly in immune cells. GPR84 activation is involved in the inflammatory response, but the mechanisms by which it modulates inflammation have been incompletely described. In this study, we investigated GPR84 expression, activation, and function in macrophages to establish the role of the receptor during the inflammatory response. We observed that GPR84 expression in murine tissues is increased by endotoxemia, hyperglycemia, and hypercholesterolemia. Ex vivo studies revealed that GPR84 mRNA expression is increased by LPS and other pro-inflammatory molecules in different murine and human macrophage populations. Likewise, high glucose concentrations and the presence of oxidized LDL increased GPR84 expression in macrophages. Activation of the GPR84 receptor with a selective agonist, 6-(octylamino) pyrimidine-2,4(1H,3H)-dione (6-n-octylaminouracil, 6-OAU), enhanced the expression of phosphorylated Akt, p-ERK, and p65 nuclear translocation under inflammatory conditions and elevated the expression levels of the inflammatory mediators TNFα, IL-6, IL-12B, CCL2, CCL5, and CXCL1. In addition, GPR84 activation triggered increased bacterial adhesion and phagocytosis in macrophages. The enhanced inflammatory response mediated by 6-OAU was not observed in GPR84-/- cells nor in macrophages treated with a selective GPR84 antagonist. Collectively, our results reveal that GPR84 functions as an enhancer of inflammatory signaling in macrophages once inflammation is established. Therefore, molecules that antagonize the GPR84 receptor may be potential therapeutic tools in inflammatory and metabolic diseases.

19.
J Am Heart Assoc ; 6(7)2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28673900

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease. Nuclear factor-κB is a nuclear transcription factor activated post-ischemia, responsible for the transcription of proinflammatory proteins. The role of nuclear factor-κB in the renal fibrosis post-AKI is unknown. METHODS AND RESULTS: We used a rat model of AKI caused by unilateral nephrectomy plus contralateral ischemia (30 minutes) and reperfusion injury (up to 28 days) to show impairment of renal function (peak: 24 hours), activation of nuclear factor-κB (peak: 48 hours), and fibrosis (28 days). In humans, AKI is diagnosed by a rise in serum creatinine. We have discovered that the IκB kinase inhibitor IKK16 (even when given at peak serum creatinine) still improved functional and structural recovery and reduced myofibroblast formation, macrophage infiltration, transforming growth factor-ß expression, and Smad2/3 phosphorylation. AKI resulted in fibrosis within 28 days (Sirius red staining, expression of fibronectin), which was abolished by IKK16. To confirm the efficacy of IKK16 in a more severe model of fibrosis, animals were subject to 14 days of unilateral ureteral obstruction, resulting in tubulointerstitial fibrosis, myofibroblast formation, and macrophage infiltration, all of which were attenuated by IKK16. CONCLUSIONS: Inhibition of IκB kinase at peak creatinine improves functional recovery, reduces further injury, and prevents fibrosis.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Quinase I-kappa B/antagonistas & inibidores , Rim/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Actinas/metabolismo , Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Creatinina/sangue , Modelos Animais de Doenças , Fibrose , Quinase I-kappa B/metabolismo , Rim/enzimologia , Rim/patologia , Rim/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , NF-kappa B/metabolismo , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fatores de Tempo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA