Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 142(5): 054705, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25662658

RESUMO

The conductivity of carbon nanotube thin films is mainly determined by carbon nanotube junctions, the resistance of which can be reduced by several different methods. We investigate electronic transport through carbon nanotube junctions in a four-terminal configuration, where two metallic single-wall carbon nanotubes are linked by a group 6 transition metal atom. The transport calculations are based on the Green's function method combined with the density-functional theory. The transition metal atom is found to enhance the transport through the junction near the Fermi level. However, the size of the nanotube affects the improvement in the conductivity. The enhancement is related to the hybridization of chromium and carbon atom orbitals, which is clearly reflected in the character of eigenstates near the Fermi level. The effects of chromium atoms and precursor molecules remaining adsorbed on the nanotubes outside the junctions are also examined.

2.
J Phys Chem B ; 119(4): 1747-55, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25523231

RESUMO

We investigate the modeling of positronium (Ps) states and their pick-off annihilation trapped at open volumes pockets in condensed molecular matter. Our starting point is the interacting many-body system of Ps and a He atom because it is the smallest entity that can mimic the energy gap between the highest occupied and lowest unoccupied molecular orbitals of molecules, and yet the many-body structure of the HePs system can be calculated accurately enough. The exact-diagonalization solution of the HePs system enables us to construct a pairwise full-correlation single-particle potential for the Ps-He interaction, and the total potential in solids is obtained as a superposition of the pairwise potentials. We study in detail Ps states and their pick-off annihilation rates in voids inside solid He and analyze experimental results for Ps-induced voids in liquid He obtaining the radii of the voids. More importantly, we generalize our conclusions by testing the validity of the Tao-Eldrup model, widely used to analyze ortho-Ps annihilation measurements for voids in molecular matter, against our theoretical results for the solid He. Moreover, we discuss the influence of the partial charges of polar molecules and the strength of the van der Waals interaction on the pick-off annihilation rate.

3.
J Chem Phys ; 124(5): 054707, 2006 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-16468901

RESUMO

We have modeled transport properties of nanostructures using Green's-function method within the framework of the density-functional theory. The scheme is computationally demanding, so numerical methods have to be chosen carefully. A typical solution to the numerical burden is to use a special basis-function set, which is tailored to the problem in question, for example, the atomic-orbital basis. In this paper we present our solution to the problem. We have used the finite-element method with a hierarchical high-order polynomial basis, the so-called p elements. This method allows the discretation error to be controlled in a systematic way. The p elements work so efficiently that they can be used to solve interesting nanosystems described by nonlocal pseudopotentials. We demonstrate the potential of the implementation with two different systems. As a test system a simple Na-atom chain between two leads is modeled and the results are compared with several previous calculations. Secondly, we consider a thin hafnium dioxide (HfO2) layer on a silicon surface as a model for a gate structure of the next generation of microelectronics.

4.
Phys Rev Lett ; 94(16): 165501, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15904239

RESUMO

Positron annihilation measurements, supported by first-principles electron-structure calculations, identify vacancies and vacancy clusters decorated by 1-2 dopant impurities in highly Sb-doped Si. The concentration of vacancy defects increases with Sb doping and contributes significantly to the electrical compensation. Annealings at low temperatures of 400-500 K convert the defects to larger complexes where the open volume is neighbored by 2-3 Sb atoms. This behavior is attributed to the migration of vacancy-Sb pairs and demonstrates at atomic level the metastability of the material grown by epitaxy at low temperature.

5.
Phys Rev Lett ; 93(11): 116802, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15447365

RESUMO

We study electronic structures of two-dimensional quantum dots in strong magnetic fields using mean-field density-functional theory and exact diagonalization. Our numerically accurate mean-field solutions show a reconstruction of the uniform-density electron droplet when the magnetic field flux quanta enter one by one the dot in stronger fields. These quanta correspond to repelling vortices forming polygonal clusters inside the dot. We find similar structures in the exact treatment of the problem by constructing a conditional operator for the analysis. We discuss important differences and limitations of the methods used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA