Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Pharm ; 17(11): 4302-4311, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33054234

RESUMO

Recently, protein therapeutics have gained significant attention as a result of their enhanced selectivity and diminished side effects compared to traditional small-molecule drugs. Despite their advantages, protein formulations typically suffer from stability issues because of aggregation and denaturation during production and storage, often resulting in detrimental immune responses. Surfactants can be used to stabilize and protect proteins in solution by preventing protein adsorption onto interfaces or by forming protective structures in solution. Herein, a detailed structure-activity relationship study is described, demonstrating the role that hydrophobic tail length plays in surfactant-mediated stabilization of the model therapeutic protein IgG. The FM1000 series, originating from a surfactant scaffold that allows for easy structure modulation, was synthesized by a simple 2-step procedure. First, phenylalanine was acylated with a variety of acyl chlorides of differing lengths to yield n-acyl phenylalanine, which was then coupled to Jeffamine M1000, a polyethylene glycol-based amine, to yield the final surfactant. With this FM1000 series, it was observed that the 14 carbon-long tail surfactant (14FM1000) was optimal at preventing IgG aggregation compared to surfactants with tails that were longer or shorter. Using a combination of dynamic surface tensiometry and quartz crystal microbalance with dissipation, it was hypothesized that 14FM1000 was able to prevent IgG adsorption, and therefore aggregation, by adsorbing appreciably onto surfaces quickly. 14FM1000 had the fastest rate of initial adsorption compared to the other surfactants studied. Short-tail surfactants were slow to and did not adsorb appreciably onto surfaces, allowing IgG adsorption. Although long-tail surfactants were also slow to adsorb, allowing IgG to adsorb and aggregate, their equilibrium adsorption was strong. Additionally, 14FM1000 was the most reversibly adsorbed surfactant, likely improving its ability to desorb and adsorb quickly to transient surfaces, therefore protecting the IgG at each new hydrophobic surface and preventing aggregation. By understanding the structure-activity relationship between surfactants and protein stabilization, we move toward more efficient design of future surfactants increasing the stability and utility of important protein therapeutics.


Assuntos
Anticorpos/química , Carbono/química , Composição de Medicamentos/métodos , Imunoglobulina G/química , Tensoativos/química , Tensoativos/farmacologia , Acilação , Adsorção/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Fenilalanina/química , Polietilenoglicóis/química , Estabilidade Proteica/efeitos dos fármacos , Relação Estrutura-Atividade , Propriedades de Superfície/efeitos dos fármacos , Tensoativos/síntese química
2.
Angew Chem Int Ed Engl ; 54(21): 6330-4, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25821033

RESUMO

The development of ESR methods that measure long-range distance distributions has advanced biophysical research. However, the spin labels commonly employed are highly flexible, which leads to ambiguity in relating ESR measurements to protein-backbone structure. Herein we present the double-histidine (dHis) Cu(2+)-binding motif as a rigid spin probe for double electron-electron resonance (DEER) distance measurements. The spin label is assembled in situ from natural amino acid residues and a metal salt, requires no postexpression synthetic modification, and provides distance distributions that are dramatically narrower than those found with the commonly used protein spin label. Simple molecular modeling based on an X-ray crystal structure of an unlabeled protein led to a predicted most probable distance within 0.5 Šof the experimental value. Cu(2+) DEER with the dHis motif shows great promise for the resolution of precise, unambiguous distance constraints that relate directly to protein-backbone structure and flexibility.


Assuntos
Proteínas de Bactérias/química , Cobre/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Histidina/metabolismo , Streptococcus/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Marcadores de Spin , Streptococcus/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-29993739

RESUMO

This paper details the systematic approach used to develop a viable clinical prototype of a therapeutic ultrasound applicator and discusses the rationale and deliberations that led to the design strategy. The applicator was specifically devised to treat chronic wounds and-to the best of the author's knowledge-is the first truly wearable device with a proven record of reducing healing time, directly translating to a reduction of healthcare costs. The prototype operates in the kHz (20-100) range of frequencies and uses noncavitational and nonthermal levels of ultrasound energy. Hence, in the absence of inertial cavitation and temperature elevation, the tissue-ultrasound interaction is considered to be dependent on stable cavitation (if any) and radiation force. The peak acoustic output pressure amplitude is limited to 55 kPa, corresponding to a spatial peak-temporal peak intensity of 100 mW/cm2. This level of intensity is considered to be safe to apply for extended (up to 4 h) periods of time. The patch-like applicator design is suitable to be embedded in wound dressing. With its lightweight (<20 g) and circular (40 mm dia) disk-shape architecture, the applicator is well suited for chronic wound treatment. A small ( n = 8 ) pilot study on the effects of the applicator on diabetic ulcers (DUs) healing time is presented. The average time to wound closure was 4.7 weeks for subjects treated with the active ultrasound applicator, compared to 12 weeks for subjects treated with a sham applicator, suggesting that patients with DUs may benefit from the proposed treatment.


Assuntos
Pé Diabético/terapia , Terapia por Ultrassom/instrumentação , Cicatrização/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bandagens , Desenho de Equipamento , Humanos , Pessoa de Meia-Idade , Terapia por Ultrassom/métodos , Adulto Jovem
4.
J Phys Chem B ; 119(7): 2839-43, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25608028

RESUMO

Double electron electron resonance (DEER) is an attractive technique that is utilized for gaining insight into protein structure and dynamics via nanometer-scale distance measurements. The most commonly used paramagnetic tag in these measurements is a nitroxide spin label, R1. Here, we present the application of two types of high-affinity Cu(2+) chelating tags, based on the EDTA and cyclen metal-binding motifs as alternative X-band DEER probes, using the B1 immunoglobulin-binding domain of protein G (GB1) as a model system. Both types of tags have been incorporated into a variety of protein secondary structure environments and exhibit high spectral sensitivity. In particular, the cyclen-based tag displays distance distributions with comparable distribution widths and most probable distances within 1-3 Å when compared to homologous R1 distributions. The results display the viability of the cyclen tag as an alternative to the R1 side chain for X-band DEER distance measurements in proteins.


Assuntos
Cátions , Quelantes , Cobre , Cisteína , Espectroscopia de Ressonância Magnética/métodos , Ciclamos , Ácido Edético , Compostos Heterocíclicos , Estrutura Secundária de Proteína , Proteínas/química , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA