Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Biol Chem ; 296: 100807, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34022222

RESUMO

Insulin sensitizers and incretin mimetics are antidiabetic agents with vastly different mechanisms of action. Thiazolidinedione (TZD) insulin sensitizers are associated with weight gain, whereas glucagon-like peptide-1 receptor agonists can induce weight loss. We hypothesized that combination of a TZD insulin sensitizer and the glucagon-like peptide-1 receptor agonist liraglutide would more significantly improve mouse models of diabetes and nonalcoholic steatohepatitis (NASH). Diabetic db/db and MS-NASH mice were treated with the TZD MSDC-0602K by oral gavage, liraglutide (Lira) by s.c. injection, or combination 0602K+Lira. Lira slightly reduced body weight and modestly improved glycemia in db/db mice. Comparatively, 0602K-treated and 0602K+Lira-treated mice exhibited slight weight gain but completely corrected glycemia and improved glucose tolerance. 0602K reduced plasma insulin, whereas Lira further increased the hyperinsulinemia of db/db mice. Surprisingly, 0602K+Lira treatment reduced plasma insulin and C-peptide to the same extent as mice treated with 0602K alone. 0602K did not reduce glucose-stimulated insulin secretion in vivo, or in isolated islets, indicating the reduced insulinemia was likely compensatory to improved insulin sensitivity. In MS-NASH mice, both 0602K or Lira alone improved plasma alanine aminotransferase and aspartate aminotransferase, as well as liver histology, but more significant improvements were observed with 0602K+Lira treatment. 0602K or 0602K+Lira also increased pancreatic insulin content in both db/db and MS-NASH mice. In conclusion, MSDC-0602K corrected glycemia and reduced insulinemia when given alone, or in combination with Lira. However, 0602K+Lira combination more significantly improved glucose tolerance and liver histology, suggesting that this combination treatment may be an effective therapeutic strategy for diabetes and NASH.


Assuntos
Acetofenonas/uso terapêutico , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Liraglutida/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Tiazolidinedionas/uso terapêutico , Animais , Quimioterapia Combinada , Feminino , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
2.
J Biol Chem ; 292(49): 20228-20239, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29021253

RESUMO

Small nucleolar RNAs (snoRNAs) guide chemical modifications of ribosomal and small nuclear RNAs, functions that are carried out in the nucleus. Although most snoRNAs reside in the nucleolus, a growing body of evidence indicates that snoRNAs are also present in the cytoplasm and that snoRNAs move between the nucleus and cytoplasm by a mechanism that is regulated by lipotoxic and oxidative stress. Here, in a genome-wide shRNA-based screen, we identified nuclear export factor 3 (NXF3) as a transporter that alters the nucleocytoplasmic distribution of box C/D snoRNAs from the ribosomal protein L13a (Rpl13a) locus. Using RNA-sequencing analysis, we show that NXF3 associates not only with Rpl13a snoRNAs, but also with a broad range of box C/D and box H/ACA snoRNAs. Under homeostatic conditions, gain- or loss-of-function of NXF3, but not related family member NXF1, decreases or increases cytosolic Rpl13a snoRNAs, respectively. Furthermore, treatment with the adenylyl cyclase activator forskolin diminishes cytosolic localization of the Rpl13a snoRNAs through a mechanism that is dependent on NXF3 but not NXF1. Our results provide evidence of a new role for NXF3 in regulating the distribution of snoRNAs between the nuclear and cytoplasmic compartments.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas de Transporte Nucleocitoplasmático/fisiologia , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Camundongos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas Ribossômicas
3.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895296

RESUMO

Background: Heart failure involves metabolic alterations including increased glycolysis despite unchanged or decreased glucose oxidation. The mitochondrial pyruvate carrier (MPC) regulates pyruvate entry into the mitochondrial matrix, and cardiac deletion of the MPC in mice causes heart failure. How MPC deletion results in heart failure is unknown. Methods: We performed targeted metabolomics and isotope tracing in wildtype (fl/fl) and cardiac-specific Mpc2-/- (CS-Mpc2-/-) hearts after in vivo injection of U-13C-glucose. Cardiac glycogen was assessed biochemically and by transmission electron microscopy. Cardiac uptake of 2-deoxyglucose was measured and western blotting performed to analyze insulin signaling and enzymatic regulators of glycogen synthesis and degradation. Isotope tracing and glycogen analysis was also performed in hearts from mice fed either low-fat diet or a ketogenic diet previously shown to reverse the CS-Mpc2-/- heart failure. Cardiac glycogen was also assessed in mice infused with angiotensin-II that were fed low-fat or ketogenic diet. Results: Failing CS-Mpc2-/- hearts contained normal levels of ATP and phosphocreatine, yet these hearts displayed increased enrichment from U-13C-glucose and increased glycolytic metabolite pool sizes. 13C enrichment and pool size was also increased for the glycogen intermediate UDP-glucose, as well as increased enrichment of the glycogen pool. Glycogen levels were increased ~6-fold in the failing CS-Mpc2-/- hearts, and glycogen granules were easily detected by electron microscopy. This increased glycogen synthesis occurred despite enhanced inhibitory phosphorylation of glycogen synthase and reduced expression of glycogenin-1. In young, non-failing CS-Mpc2-/- hearts, increased glycolytic 13C enrichment occurred, but glycogen levels remained low and unchanged compared to fl/fl hearts. Feeding a ketogenic diet to CS-Mpc2-/- mice reversed the heart failure and normalized the cardiac glycogen and glycolytic metabolite accumulation. Cardiac glycogen levels were also elevated in mice infused with angiotensin-II, and both the cardiac hypertrophy and glycogen levels were improved by ketogenic diet. Conclusions: Our results indicate that loss of MPC in the heart causes glycogen accumulation and heart failure, while a ketogenic diet can reverse both the glycogen accumulation and heart failure. We conclude that maintaining mitochondrial pyruvate import and metabolism is critical for the heart, unless cardiac pyruvate metabolism is reduced by consumption of a ketogenic diet.

4.
bioRxiv ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39282341

RESUMO

Failing hearts increasingly metabolize ketone bodies, and enhancing ketosis improves heart failure (HF) remodeling. Circulating ketones are elevated by fasting/starvation, which is mimicked with a high-fat, low-carbohydrate "ketogenic diet" (KD). While speculated that KD improves HF through increased ketone oxidation, some evidence suggests KD paradoxically downregulates cardiac ketone oxidation despite increased ketone delivery. We sought to clarify the significance of cardiac ketone metabolism during KD in HF. Mice were subjected to transverse aortic constriction with apical myocardial infarction (TAC-MI) and fed either low-fat (LF) control or KD. Cardiac-specific mitochondrial pyruvate carrier 2 (csMPC2-/-) mice were used as a second model of heart failure. In both mice, feeding a KD improved HF, determined by echocardiography, heart weights, and gene expression analyses. Although KD increases plasma ketone bodies, gene expression for ketone metabolic genes is decreased in the hearts of KD-fed mice. Cardiac-specific ß-hydroxybutyrate dehydrogenase 1 (csBDH1-/-), the first enzyme in ketone catabolism, mice were also studied and crossed with the csMPC2-/- mice to create double knockout (DKO) mice. These mice were aged to 16 weeks and switched to LF or KD, and KD was able to completely normalize the hearts of both csMPC2-/- and DKO mice, suggesting that ketone metabolism is unnecessary for improving heart failure with ketogenic diet. These studies were then repeated, and mice injected with U-13C-ß-hydroxybutyrate to evaluate ketone metabolism. KD feeding significantly decreased the enrichment of the TCA cycle from ketone body carbons, as did the BDH1-deletion in DKO mice. Gene expression and respirometry suggests that KD instead increases cardiac fat oxidation. In conclusion, these results suggest that ketogenic diet decreases cardiac ketone metabolism and does not require ketone metabolism to improve heart failure.

5.
Nat Commun ; 15(1): 2835, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565540

RESUMO

Obesity is a well-established risk factor for human cancer, yet the underlying mechanisms remain elusive. Immune dysfunction is commonly associated with obesity but whether compromised immune surveillance contributes to cancer susceptibility in individuals with obesity is unclear. Here we use a mouse model of diet-induced obesity to investigate tumor-infiltrating CD8 + T cell responses in lean, obese, and previously obese hosts that lost weight through either dietary restriction or treatment with semaglutide. While both strategies reduce body mass, only dietary intervention restores T cell function and improves responses to immunotherapy. In mice exposed to a chemical carcinogen, obesity-related immune dysfunction leads to higher incidence of sarcoma development. However, impaired immunoediting in the obese environment enhances tumor immunogenicity, making the malignancies highly sensitive to immunotherapy. These findings offer insight into the complex interplay between obesity, immunity and cancer, and provide explanation for the obesity paradox observed in clinical immunotherapy settings.


Assuntos
Neoplasias , Obesidade , Humanos , Animais , Camundongos , Monitorização Imunológica , Obesidade/etiologia , Dieta , Fatores de Risco
6.
Redox Biol ; 59: 102557, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36508858

RESUMO

Neutrophil and airway epithelial cell interactions are critical in the inflammatory response to viral infections including respiratory syncytial virus, Sendai virus, and SARS-CoV-2. Airway epithelial cell dysfunction during viral infections is likely mediated by the interaction of virus and recruited neutrophils at the airway epithelial barrier. Neutrophils are key early responders to viral infection. Neutrophil myeloperoxidase catalyzes the conversion of hydrogen peroxide to hypochlorous acid (HOCl). Previous studies have shown HOCl targets host neutrophil and endothelial cell plasmalogen lipids, resulting in the production of the chlorinated lipid, 2-chlorofatty aldehyde (2-ClFALD). We have previously shown that the oxidation product of 2-ClFALD, 2-chlorofatty acid (2-ClFA) is present in bronchoalveolar lavage fluid of Sendai virus-infected mice, which likely results from the attack of the epithelial plasmalogen by neutrophil-derived HOCl. Herein, we demonstrate small airway epithelial cells contain plasmalogens enriched with oleic acid at the sn-2 position unlike endothelial cells which contain arachidonic acid enrichment at the sn-2 position of plasmalogen. We also show neutrophil-derived HOCl targets epithelial cell plasmalogens to produce 2-ClFALD. Further, proteomics and over-representation analysis using the ω-alkyne analog of the 2-ClFALD molecular species, 2-chlorohexadecanal (2-ClHDyA) showed cell adhesion molecule binding and cell-cell junction enriched categories similar to that observed previously in endothelial cells. However, in contrast to endothelial cells, proteins in distinct metabolic pathways were enriched with 2-ClFALD modification, particularly pyruvate metabolism was enriched in epithelial cells and mitochondrial pyruvate respiration was reduced. Collectively, these studies demonstrate, for the first time, a novel plasmalogen molecular species distribution in airway epithelial cells that are targeted by myeloperoxidase-derived hypochlorous acid resulting in electrophilic 2-ClFALD, which potentially modifies epithelial physiology by modifying proteins.


Assuntos
COVID-19 , Plasmalogênios , Humanos , Animais , Camundongos , Plasmalogênios/química , Plasmalogênios/metabolismo , Peroxidase/metabolismo , Ácido Hipocloroso/metabolismo , Células Endoteliais/metabolismo , COVID-19/metabolismo , SARS-CoV-2/metabolismo , Proteínas/metabolismo , Neutrófilos/metabolismo , Aldeídos/metabolismo
7.
Gastro Hep Adv ; 2(4): 558-572, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293574

RESUMO

BACKGROUND AND AIMS: Polymorphisms near the membrane bound O-acyltransferase domain containing 7 (MBOAT7) genes are associated with worsened nonalcoholic fatty liver (NASH), and nonalcoholic fatty liver disease (NAFLD)/NASH may decrease MBOAT7 expression independent of these polymorphisms. We hypothesized that enhancing MBOAT7 function would improve NASH. METHODS: Genomic and lipidomic databases were mined for MBOAT7 expression and hepatic phosphatidylinositol (PI) abundance in human NAFLD/NASH. Male C57BL6/J mice were fed either choline-deficient high-fat diet or Gubra Amylin NASH diet and subsequently infected with adeno-associated virus expressing MBOAT7 or control virus. NASH histological scoring and lipidomic analyses were performed to assess MBOAT7 activity, hepatic PI, and lysophosphatidylinositol (LPI) abundance. RESULTS: Human NAFLD/NASH decreases MBOAT7 expression and hepatic abundance of arachidonate-containing PI. Murine NASH models display subtle changes in MBOAT7 expression, but significantly decreased activity. After MBOAT7 overexpression, liver weights, triglycerides, and plasma alanine and aspartate transaminase were modestly improved by MBOAT7 overexpression, but NASH histology was not improved. Despite confirmation of increased activity with MBOAT7 overexpression, content of the main arachidonoylated PI species was not rescued by MBOAT7 although the abundance of many PI species was increased. Free arachidonic acid was elevated but the MBOAT7 substrate arachidonoyl-CoA was decreased in NASH livers compared to low-fat controls, likely due to the decreased expression of long-chain acyl-CoA synthetases. CONCLUSION: Results suggest decreased MBOAT7 activity plays a role in NASH, but MBOAT7 overexpression fails to measurably improve NASH pathology potentially due to the insufficient abundance of its arachidonoyl-CoA substrate.

8.
Biomedicines ; 10(2)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35203575

RESUMO

The mitochondrial pyruvate carrier (MPC) is an inner-mitochondrial membrane protein complex that has emerged as a drug target for treating a variety of human conditions. A heterodimer of two proteins, MPC1 and MPC2, comprises the functional MPC complex in higher organisms; however, the structure of this complex, including the critical residues that mediate binding of pyruvate and inhibitors, remain to be determined. Using homology modeling, we identified a putative substrate-binding cavity in the MPC dimer. Three amino acid residues (Phe66 (MPC1) and Asn100 and Lys49 (MPC2)) were validated by mutagenesis experiments to be important for substrate and inhibitor binding. Using this information, we developed a pharmacophore model and then performed a virtual screen of a chemical library. We identified five new non-indole MPC inhibitors, four with IC50 values in the nanomolar range that were up to 7-fold more potent than the canonical inhibitor UK-5099. These novel compounds possess drug-like properties and complied with Lipinski's Rule of Five. They are predicted to have good aqueous solubility, oral bioavailability, and metabolic stability. Collectively, these studies provide important information about the structure-function relationships of the MPC complex and for future drug discovery efforts targeting the MPC.

9.
Cancer Immunol Res ; 9(2): 227-238, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023966

RESUMO

Checkpoint blockade immunotherapy relies on the empowerment of the immune system to fight cancer. Why some patients fail to achieve durable clinical responses is not well understood, but unique individual factors such as diet, obesity, and related metabolic syndrome could play a role. The link between obesity and patient outcomes remains controversial and has been mired by conflicting reports and limited mechanistic insight. We addressed this in a C57BL/6 mouse model of diet-induced obesity using a Western diet high in both fats and sugars. Obese mice bearing B16 melanoma or MC38 carcinoma tumors had impaired immune responses to immunotherapy and a reduced capacity to control tumor progression. Unexpectedly, these compromised therapeutic outcomes were independent of body mass and, instead, were directly attributed to dietary fructose. Melanoma tumors in mice on the high-fructose diet were resistant to immunotherapy and showed increased expression of the cytoprotective enzyme heme oxygenase-1 (HO-1). This increase in HO-1 protein was recapitulated in human A375 melanoma cells exposed to fructose in culture. Induced expression of HO-1 shielded tumor cells from immune-mediated killing and was critical for resistance to checkpoint blockade immunotherapy, which could be overcome in vivo using a small-molecule inhibitor of HO-1. This study reveals dietary fructose as a driver of tumor immune evasion, identifying HO-1 expression as a mechanism of resistance and a promising molecular target for combination cancer immunotherapy.See article by Khojandi et al., p. 214.


Assuntos
Citoproteção , Resistencia a Medicamentos Antineoplásicos , Frutose/metabolismo , Neoplasias/metabolismo , Evasão Tumoral , Animais , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma , Linhagem Celular Tumoral , Feminino , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico
10.
Nat Metab ; 2(11): 1232-1247, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33106690

RESUMO

The myocardium is metabolically flexible; however, impaired flexibility is associated with cardiac dysfunction in conditions including diabetes and heart failure. The mitochondrial pyruvate carrier (MPC) complex, composed of MPC1 and MPC2, is required for pyruvate import into the mitochondria. Here we show that MPC1 and MPC2 expression is downregulated in failing human and mouse hearts. Mice with cardiac-specific deletion of Mpc2 (CS-MPC2-/-) exhibited normal cardiac size and function at 6 weeks old, but progressively developed cardiac dilation and contractile dysfunction, which was completely reversed by a high-fat, low-carbohydrate ketogenic diet. Diets with higher fat content, but enough carbohydrate to limit ketosis, also improved heart failure, while direct ketone body provisioning provided only minor improvements in cardiac remodelling in CS-MPC2-/- mice. An acute fast also improved cardiac remodelling. Together, our results reveal a critical role for mitochondrial pyruvate use in cardiac function, and highlight the potential of dietary interventions to enhance cardiac fat metabolism to prevent or reverse cardiac dysfunction and remodelling in the setting of MPC deficiency.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Ciclo do Ácido Cítrico/genética , Dieta Cetogênica , Regulação para Baixo , Jejum , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Corpos Cetônicos/metabolismo , Metabolismo dos Lipídeos/genética , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Contração Miocárdica , Miocárdio/metabolismo , Ácido Pirúvico/metabolismo
11.
J Clin Invest ; 126(12): 4616-4625, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27820699

RESUMO

Small nucleolar RNAs (snoRNAs) are non-coding RNAs that form ribonucleoproteins to guide covalent modifications of ribosomal and small nuclear RNAs in the nucleus. Recent studies have also uncovered additional non-canonical roles for snoRNAs. However, the physiological contributions of these small RNAs are largely unknown. Here, we selectively deleted four snoRNAs encoded within the introns of the ribosomal protein L13a (Rpl13a) locus in a mouse model. Loss of Rpl13a snoRNAs altered mitochondrial metabolism and lowered reactive oxygen species tone, leading to increased glucose-stimulated insulin secretion from pancreatic islets and enhanced systemic glucose tolerance. Islets from mice lacking Rpl13a snoRNAs demonstrated blunted oxidative stress responses. Furthermore, these mice were protected against diabetogenic stimuli that cause oxidative stress damage to islets. Our study illuminates a previously unrecognized role for snoRNAs in metabolic regulation.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Íntrons , Ilhotas Pancreáticas/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , RNA Nuclear Pequeno/metabolismo , Proteínas Ribossômicas , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Glucose/genética , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , RNA Nuclear Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA