Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Glycobiology ; 30(3): 152-158, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31742328

RESUMO

The influence of advanced glycation end products (AGEs) in the biological processes contribute to the life-changing complications such as progression of cancer, diabetes and other chronic disorders. The receptor of AGEs while interacting with its ligands causes a never-ending irregularity in the cell-signaling communication. Hence, AGEs are considered as an important link between progression and contribution to cancer. This study focuses on the presence and/or absence of oxidative and glycative stress in the serum samples of various cancer patients. During analysis of the early and intermediate glycation product in cancer patient's sera, our result indicates an increasing trend of both the adducts as compared to normal healthy subjects. Similarly, one of the AGEs i.e., carboxymethyllysine was found to be enhanced in cancer sera as compared to NHS. The binding characteristics of circulating auto-antibodies in cancer patient's sera against human serum albumin (HSA)-AGEs were assessed through ELISA and furthermore, the maximum percent inhibition against HSA-AGEs was observed as 57-63%, 46-62% and 42-64% in prostate cancer, lung cancer and head and neck cancer. Hence, our result successfully assisted the presence of AGEs in all the cancer patient's sera though it is not clear which specific cancer is more potent to AGEs.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Neoplasias/metabolismo , Albumina Sérica Humana/metabolismo , Adolescente , Adulto , Idoso , Feminino , Produtos Finais de Glicação Avançada/sangue , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Oxirredução , Adulto Jovem
2.
Plants (Basel) ; 10(11)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34834749

RESUMO

Molybdenum ions (Mo) can improve plants' nutritional value primarily by enhancing nitrogenous metabolism. In this study, the comparative effects of seed priming using Mo were evaluated among sproutings of Canavalia species/cultivars, including Canavalia ensiformis var. gladiata (CA1), Canavalia ensiformis var. truncata Ricker (CA2), and Canavalia gladiata var. alba Hisauc (CA3). Mo impacts on growth, metabolism (e.g., nitrogen and phenolic metabolism, pigment and total nutrient profiles), and biological activities were assayed. Principal component analysis (PCA) was used to correlate Mo-mediated impacts. The results showed that Mo induced photosynthetic pigments that resulted in an improvement in growth and increased biomass. The N content was increased 0.3-fold in CA3 and 0.2-fold in CA1 and CA2. Enhanced nitrogen metabolism by Mo provided the precursors for amino acids, protein, and lipid biosynthesis. At the secondary metabolic level, phenolic metabolism-related precursors and enzyme activities were also differentially increased in Canavalia species/cultivars. The observed increase in metabolism resulted in the enhancement of the antioxidant (2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP)) and antidiabetic potential (Glycemic index (GI) and inhibition activity of α-amylase, and α-glucosidase) of species. The antioxidant activity increased 20% in CA3, 14% in CA1, and 8% in CA2. Furthermore, PCA showed significant variations not only between Mo-treated and untreated samples but also among Canavalia species. Overall, this study indicated that the sprouts of Canavalia species have tremendous potential for commercial usage due to their high nutritive value, which can be enhanced further with Mo treatment to accomplish the demand for nutritious feed.

3.
Saudi J Biol Sci ; 25(2): 273-277, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29472777

RESUMO

An efficient micropropagation protocol was developed for Ruta graveolens Linn. using shoot tip meristems derived from a 4-month-old field grown plant. In vitro shoot regeneration and proliferation was accomplished on Murashige and Skoogs (MS) semi-solid medium in addition to different doses of cytokinins viz.6- benzyl adenine (BA), Kinetin (Kn) or 2-isopetynyl adenine (2iP), singly or in combination with auxins viz. indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) or α-naphthalene acetic acid (NAA). Highest regeneration frequency (27.6%) was obtained on (MS) medium composed of BA (10 µM) with maximum number (9.4) of shoots and 4.3 cm shoot length after 4 weeks of incubation. Among various combinations tried best regeneration frequency (71%) of multiple shoot formation with highest number (12.6) of shoots per shoot tip explants were achieved in MS medium augmented with a combination BA (10.0 µM) and NAA (2.5 µM) after 4 weeks of incubation. The optimum frequency (97%) of rhizogenesis was achieved on half-strength MS medium having 0.5 µM IBA after 4 weeks of incubation. Tissue culture raised plantlets with 5-7 fully opened leaves with healthy root system were successfully acclimatized off in Soilrite™ with 80% survival rate followed by transportation to normal soil under natural light. Genetic stability among in vitro raised progeny was evaluated by ISSR and RAPD markers. The entire banding pattern revealed from in vitro regenerated plants was monomorphic to the donor. The present protocol provides an alternative option for commercial propagation and fruitful setting up of genetically uniform progeny for sustainable utilization and germplasm preservation.

4.
Genes (Basel) ; 9(6)2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29925808

RESUMO

Plants are sessile organisms and, in order to defend themselves against exogenous (a)biotic constraints, they synthesize an array of secondary metabolites which have important physiological and ecological effects. Plant secondary metabolites can be classified into four major classes: terpenoids, phenolic compounds, alkaloids and sulphur-containing compounds. These phytochemicals can be antimicrobial, act as attractants/repellents, or as deterrents against herbivores. The synthesis of such a rich variety of phytochemicals is also observed in undifferentiated plant cells under laboratory conditions and can be further induced with elicitors or by feeding precursors. In this review, we discuss the recent literature on the production of representatives of three plant secondary metabolite classes: artemisinin (a sesquiterpene), lignans (phenolic compounds) and caffeine (an alkaloid). Their respective production in well-known plants, i.e., Artemisia, Coffea arabica L., as well as neglected species, like the fibre-producing plant Urtica dioica L., will be surveyed. The production of artemisinin and caffeine in heterologous hosts will also be discussed. Additionally, metabolic engineering strategies to increase the bioactivity and stability of plant secondary metabolites will be surveyed, by focusing on glycosyltransferases (GTs). We end our review by proposing strategies to enhance the production of plant secondary metabolites in cell cultures by inducing cell wall modifications with chemicals/drugs, or with altered concentrations of the micronutrient boron and the quasi-essential element silicon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA