Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Br J Anaesth ; 132(5): 886-898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38336513

RESUMO

BACKGROUND: Digital health interventions offer a promising approach for monitoring during postoperative recovery. However, the effectiveness of these interventions remains poorly understood, particularly in children. The objective of this study was to assess the efficacy of digital health interventions for postoperative recovery in children. METHODS: A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, with the use of automation tools for searching and screening. We searched five electronic databases for randomised controlled trials or non-randomised studies of interventions that utilised digital health interventions to monitor postoperative recovery in children. The study quality was assessed using Cochrane Collaboration's Risk of Bias tools. The systematic review protocol was prospectively registered with PROSPERO (CRD42022351492). RESULTS: The review included 16 studies involving 2728 participants from six countries. Tonsillectomy was the most common surgery and smartphone apps (WeChat) were the most commonly used digital health interventions. Digital health interventions resulted in significant improvements in parental knowledge about the child's condition and satisfaction regarding perioperative instructions (standard mean difference=2.16, 95% confidence interval 1.45-2.87; z=5.98, P<0.001; I2=88%). However, there was no significant effect on children's pain intensity (standard mean difference=0.09, 95% confidence interval -0.95 to 1.12; z=0.16, P=0.87; I2=98%). CONCLUSIONS: Digital health interventions hold promise for improving parental postoperative knowledge and satisfaction. However, more research is needed for child-centric interventions with validated outcome measures. Future work should focus development and testing of user-friendly digital apps and wearables to ease the healthcare burden and improve outcomes for children. SYSTEMATIC REVIEW PROTOCOL: PROSPERO (CRD42022351492).


Assuntos
Saúde Digital , Aplicativos Móveis , Humanos , Revisões Sistemáticas como Assunto
2.
J Sci Food Agric ; 103(4): 1846-1855, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36347624

RESUMO

BACKGROUND: The protein-polyphenol interaction mechanism has always been a research hotspot, but their interaction is affected by heat treatment, which is widely applied in food processing. Moreover, the effects of microwave or water-bath heating on the protein-polyphenol interaction mechanism have been not clarified. The pasteurization condition (65 °C, 30 min) was selected to compare the effects of microwave or water bath on binding behavior, structure, and cell proliferation between α-lactalbumin (α-LA) and safflower yellow (SY), thus providing a guide for the selection of functional dairy processing conditions. RESULTS: Microwave heat treatment of α-LA-SY resulted in stronger fluorescence quenching than that of conventional heat treatment. Moreover, the binding constant Ka of all α-LA-SY samples was augmented significantly after microwave or water bath treatment, and microwave-heated α-LA-SY showed the maximum Ka . Fourier transform infrared spectroscopy showed that microwave heating resulted in more ordered structures of α-LA into its disordered structures than water bath heating. However, the ferric reducing antioxidant power and chroma value of α-LA-SY were more reduced by microwave heating than by water bath heating. Moreover, microwave heating facilitated the cell proliferation of α-LA-SY compared with water bath treatment. CONCLUSION: It was demonstrated that microwave heating promoted interaction between α-LA and SY more than water bath heating did. Microwave heat treatment was a safe and effective way to enhance the binding affinity of α-LA to SY, being a potential application in food industry. © 2022 Society of Chemical Industry.


Assuntos
Lactalbumina , Micro-Ondas , Lactalbumina/química , Calefação , Temperatura Alta , Fatores de Transcrição , Proliferação de Células , Água
3.
Compr Rev Food Sci Food Saf ; 22(6): 4242-4281, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37732485

RESUMO

Emulsion systems are extensively utilized in the food industry, including dairy products, such as ice cream and salad dressing, as well as meat products, beverages, sauces, and mayonnaise. Meanwhile, diverse advanced technologies have been developed for emulsion preparation. Compared with other techniques, high-intensity ultrasound (HIUS) and high-pressure homogenization (HPH) are two emerging emulsification methods that are cost-effective, green, and environmentally friendly and have gained significant attention. HIUS-induced acoustic cavitation helps in efficiently disrupting the oil droplets, which effectively produces a stable emulsion. HPH-induced shear stress, turbulence, and cavitation lead to droplet disruption, altering protein structure and functional aspects of food. The key distinctions among emulsification devices are covered in this review, as are the mechanisms of the HIUS and HPH emulsification processes. Furthermore, the preparation of emulsions including natural polymers (e.g., proteins-polysaccharides, and their complexes), has also been discussed in this review. Moreover, the review put forward to the future HIUS and HPH emulsification trends and challenges. HIUS and HPH can prepare much emulsifier-stable food emulsions, (e.g., proteins, polysaccharides, and protein-polysaccharide complexes). Appropriate HIUS and HPH treatment can improve emulsions' rheological and emulsifying properties and reduce the emulsions droplets' size. HIUS and HPH are suitable methods for developing protein-polysaccharide forming stable emulsions. Despite the numerous studies conducted on ultrasonic and homogenization-induced emulsifying properties available in recent literature, this review specifically focuses on summarizing the significant progress made in utilizing biopolymer-based protein-polysaccharide complex particles, which can provide valuable insights for designing new, sustainable, clean-label, and improved eco-friendly colloidal systems for food emulsion. PRACTICAL APPLICATION: Utilizing complex particle-stabilized emulsions is a promising approach towards developing safer, healthier, and more sustainable food products that meet legal requirements and industrial standards. Moreover, the is an increasing need of concentrated emulsions stabilized by biopolymer complex particles, which have been increasingly recognized for their potential health benefits in protecting against lifestyle-related diseases by the scientific community, industries, and consumers.


Assuntos
Emulsificantes , Ultrassom , Emulsões/química , Emulsificantes/química , Polissacarídeos/química , Biopolímeros , Proteínas
4.
J Dairy Sci ; 105(1): 83-96, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34635352

RESUMO

This research aimed to advance the understanding of acceptable sensory qualities of potable whey-based spirit from nonsupplemented, mid-supplemented, and high-supplemented whey samples by analyzing major volatile compounds during different stages of distillation (head, heart, and tail). The results demonstrated that commercial Saccharomyces cerevisiae strain in lactase-hydrolyzed whey showed rapid and complete sugar hydrolysis and efficient ethanol production in 24, 30, and 36 h on average, producing up to 29.5, 42.1, and 56.4 g/L of ethanol, respectively. The variations in titratable acidity, specific gravity, pH value, residual protein, sugar content, and alcohol yield were investigated during the fermentation. The total amount of volatile compound concentrations significantly decreased from the head (2,087-2,549 mg/L) to the tail whey spirits (890-1,407 mg/L). In the whey spirit, 2-methyl-1-butanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 1-propanol, acetaldehyde, and ethyl acetate were the most prevalent dominant compounds, accounting for the largest proportion of total volatile compounds. The volatile compounds detected were far below the acceptable legal limit. The results suggest that high sensory qualities of potable whey-based spirits can be produced by fermentation of lactose-supplemented whey with S. cerevisiae cells.


Assuntos
Lactose , Soro do Leite , Animais , Destilação , Fermentação , Saccharomyces cerevisiae , Proteínas do Soro do Leite
5.
Nanotechnology ; 32(41)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34171851

RESUMO

Two-dimensional graphitic carbon nitride (g-C3N4, GCN) is considered as one of the promising visible light-responsive photocatalysts for energy storage and environmental remediation. However, the photocatalytic performance of pristine GCN is restricted by the inherent shortcomings of rapid charge carrier recombination and limited absorption of visible light. Vacancy engineering is widely accepted as the auspicious approach for boosting the photocatalytic activity of GCN-based photocatalysts. Herein, a magnesium thermal calcination method has been developed to reconstruct GCN, in which magnesium serves as a carbon etcher for introducing carbon vacancies and pores into GCN (Vc-GCN). The fabricated Vc-GCN demonstrates excellent photocatalytic performances of degrading hazardous 4-chlorophenol under visible light irradiation benefiting from the improved carrier separating and light absorption ability as well as rich reactive sites. The optimal Vc-GCN sample delivers 2.3-fold enhancement from the pristine GCN. The work provides a tactic to prepare GCN photocatalysts with controllable carbon vacancies and for a candidate for the degradation of organic pollutants from the environment.

6.
Small ; 16(50): e2005704, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33230921

RESUMO

The current investigation in magnetism in 2D materials offers new opportunities for studying spintronics at low dimensions. Here, reversible photoinduced room temperature magnetization in 2D Bi2 WO6 nanosheets is reported for the first time. Compared with the original state, the ultraviolet (UV)-illuminated Bi2 WO6 nanosheets show a yellow-green color change and significantly enhanced magnetic signals (saturated magnetization (Ms ) increased from 0.002 to 0.12 emu g-1 ). X-ray photoelectron spectroscopy (XPS) results show unexpected W reduction (W6+ to W5+ /W4+) and Bi oxidation (Bi3+ to Bi5+ ) upon UV illumination for the Bi2 WO6 nanosheets, indicating a photoexcited Bi to W charge transfer. Density functional theory (DFT) calculations indicate spontaneous spin polarization of the Bi2 WO6 nanosheets in the excited metastable state. Meanwhile, thicker Bi2 WO6 nanoplates or nanoparticles show no enhanced magnetic signals upon UV illumination. UV illumination of the thin Bi2 WO6 nanosheets can induce the formation of internal electric field (polarization), leading to structural deformation/lattice distortion (photostriction). The photoexcited electrons are trapped in the WO6 layers while the photogenerated holes are trapped in the Bi2 O2 layers, leading to spin polarization and enhance the magnetization. The research may bring some new insights in tuning the magnetic properties of 2D nanostructures.

7.
Toxicol Mech Methods ; 28(5): 361-368, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29327633

RESUMO

In this study, we investigated the mechanism underlying age-related susceptibility in broilers to aflatoxin B1 (AFB1). The results showed that AFB1 induced significant changes in serum alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transferase (GGT) activity & liver superoxide dismutase (SOD), malonaldehyde (MDA), glutathione peroxidase (GSH-Px) and glutathione S-transferase (GST) activity at day 7, 21 and 42 relative to control group. However, AFB1-induced changes in serum biochemical parameters and liver antioxidant activities become less severe with increasing age of broilers. Particularly, liver cytosolic GST activity increases with the age of broilers, crucial for the detoxification of AFB1. The mRNA expression level of Cytochrome P450 (CYP) enzymes was significantly higher at day 7, and decreases at day 21 and 42. While, the mRNA expression level of liver GSTA3, GSTA4 and EPHX1 increases with age of broilers. Maximum AFB1 residues level was detected at day 42 relative to day 7 and 21. While, AFM1 residues level increases (p < 0.05) from day 7 to 21, but decreases (p > 0.05) at day 42. Most importantly, our data confirmed the efficient AFB1-bioactivation by CYP enzymes and deficient detoxification of GST enzymes at younger age (∼7-day old) compared to older age. In summary, the age-related changes particularly in phase-I and phase-II enzymes mainly responsible for AFB1 bioactivation and detoxification may be partially accountable for the increased susceptibility of younger broilers (∼7-day old) compared to older broilers.


Assuntos
Aflatoxina B1/toxicidade , Galinhas/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Epóxido Hidrolases/metabolismo , Glutationa Transferase/metabolismo , Fígado/enzimologia , Ativação Metabólica , Aflatoxina B1/metabolismo , Aflatoxina M1/metabolismo , Aflatoxina M1/toxicidade , Fatores Etários , Animais , Galinhas/sangue , Galinhas/genética , Sistema Enzimático do Citocromo P-450/genética , Epóxido Hidrolases/genética , Regulação Enzimológica da Expressão Gênica , Glutationa Transferase/genética , Inativação Metabólica , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medição de Risco
8.
Malar J ; 14: 192, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25947349

RESUMO

BACKGROUND: Malaria is a major health problem in the tropical and subtropical world. In India, 95% of the population resides in malaria endemic regions and it is major public health problem in most parts of the country. The present work has developed malaria maps by integrating socio-economic, epidemiology and geographical dimensions of three eastern districts of Uttar Pradesh, India. The area has been studied in each dimension separately, and later integrated to find a list of vulnerable pockets/villages, called as malarial hotspots. METHODS: The study has been done at village level. Seasonal variation of malaria, comparison of epidemiology indices and progress of the medical facility were studied. Ten independent geographical information system (GIS) maps of socio-economic aspects (population, child population, literacy, and work force participation), epidemiology (annual parasitic index (API) and slides collected and examined) and geographical features (settlement, forest cover, water bodies, rainfall, relative humidity, and temperature) were drawn and studied. These maps were overlaid based on computed weight matrix to find malarial hotspot. RESULTS: It was found that the studied dimensions were inter-weaving factors for malaria epidemic and closely affected malaria situations as evidenced from the obtained correlation matrix. The regions with water logging, high rainfall and proximity to forest, along with poor socio-economic conditions, are primarily hotspot regions. The work is presented through a series of GIS maps, tables, figures and graphs. A total of 2,054 out of 8,973 villages studied were found to be malarial hotspots and consequently suggestions were made to the concerned government malaria offices. CONCLUSION: With developing technology, information tools such as GIS, have captured almost every field of scientific research especially of vector-borne diseases, such as malaria. Malarial mapping enables easy update of information and effortless accessibility of geo-referenced data to policy makers to produce cost-effective measures for malaria control in endemic regions.


Assuntos
Sistemas de Informação Geográfica , Malária/epidemiologia , Mapeamento Geográfico , Humanos , Índia/epidemiologia , Malária/parasitologia , Medição de Risco , Fatores Socioeconômicos
9.
Ultrason Sonochem ; 102: 106732, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150958

RESUMO

The utilization of peptide-chelated calcium is low due to the influence of factors such as solubility, heat and digestive environmental conditions; therefore, it is crucial to protect, prolong and stabilize this nutrient in order to enhance its efficacy. This study was conducted to prepare corn peptide-chelated calcium microcapsules using ß-cyclodextrin (ß-CD) as the wall material through an improved ultrasonic-assisted method. The structure, solubility, thermal stability, and in vitro gastrointestinal digestion of these microcapsules were thoroughly investigated and analyzed. The microcapsules were prepared using the following recommended conditions: a chelate concentration of 5 mg/mL, a mass ratio of chelate to ß-CD of 1:8 g/g, and a synchronous dual-frequency ultrasound (20/28 kHz) at a power of 75 W, a duty ratio of 20/5 s/s, and a time of 20 min. These specific parameters were carefully selected to ensure the optimal fabrication of the microcapsules. The results showed that the utilization of dual-frequency ultrasound resulted in a significant increase in both the encapsulation rate and yield, which were enhanced by 15.84 % and 15.68 %, respectively, reaching impressive values of 79.17 % and 90.60 %. Moreover, the results of the structure index analysis provided further confirmation that ultrasonic treatment had a significant impact on the structure of the microcapsules, leading to a noticeable reduction in particle size and transformation into nanoparticles. Furthermore, the microcapsules demonstrated excellent solubility within a wide pH range of 2 to 10, with solubility ranging from 93.54 % to 88.68 %. Additionally, these microcapsules exhibited remarkable thermal stability, retaining a minimum of 84.8 % of their stability when exposed to temperatures ranging from 40 to 80 °C. Moreover, during gastric and intestinal digestion, these microcapsules exhibited a high slow-release rate of 44.66 % and 51.6 %, indicating their ability to gradually release calcium contents. The inclusion of dual-frequency ultrasound in the preparation of high calcium microcapsules yielded promising outcomes. Overall, our work presents a novel method for synthesizing corn peptide-chelated calcium microcapsules with desirable properties such as good solubility, excellent thermal stability, and a significant slow-release effect. These microcapsules have the potential to serve as fortified high calcium supplements.


Assuntos
Cálcio , Zea mays , Cápsulas/química , Solubilidade , Peptídeos
10.
Int J Biol Macromol ; 260(Pt 2): 129479, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237831

RESUMO

Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.


Assuntos
Conservação de Alimentos , Glucanos , Animais , Glucanos/farmacologia , Conservação de Alimentos/métodos , Embalagem de Alimentos/métodos , Permeabilidade
11.
Int J Biol Macromol ; 257(Pt 1): 128562, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056154

RESUMO

In this study, xanthan gum (XG), sodium alginate (SA), guar gum (GG), and gum Arabic (GA), were used to modify Lotus root starch (LRS). The incorporation XG, SA, and GG significantly (p < 0.05) influence the swelling power (SP) of LRS, among which the 1.5 % of XG exhibited the highest value of 25.84 g/g at 90 °C. Gelatinization analysis revealed that XG raised the final viscosity (FV) and lowered the breakdown (BD), while SA significantly increased peak viscosity (PV) and BD. Furthermore, GG and GA exhibited a substantial reduction in setback (SB). The incorporation of XG, SA, and GG enhanced the rheological and structural properties (e.g., gel strength and elasticity) of LRS. Particularly, XG demonstrated a more prominent effect, while GA exhibited an opposite trend. Moreover, the structural analyses revealed that hydrophilic colloids have no impact on the functional group and crystal structure of the LRS. However, complex system exhibited the more stable hydrogen bonding. The addition of 1.5 % XG exhibited the most stable hydrogen bonding and highest water binding affinity. Overall, the results demonstrated the effect of different hydrophilic colloids on LRS, offering a theoretical basis for LRS applications and novel insights for the use of starches and hydrocolloids.


Assuntos
Coloides , Amido , Amido/química , Coloides/química , Géis/química , Polissacarídeos Bacterianos/química , Goma Arábica/química , Viscosidade , Reologia
12.
Ultrason Sonochem ; 103: 106796, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38350241

RESUMO

Curation meat products involves multiple stages, including pre-curing processing (thawing, cleaning, and cutting), curing itself, and post-curing processing (freezing, and packaging). Ultrasound are nonthermal processing technology widely used in food industry. This technology is preferred because it reduces the damages caused by traditional processing techniques on food, while simultaneously improving the nutritional properties and processing characteristics of food. The utilization of ultrasonic-assisted curing technology has attracted significant attention within the realm of meat product curing, encouraging extensive research efforts. In terms of curing meat products, ultrasonic-assisted curing technology has been widely studied due to its advantages of accelerating the curing speed, reducing nutrient loss, and improving the tenderness of cured meats. Therefore, this article aims to comprehensively review the application and mechanism of ultrasound technology in various stages of meat product curing. Furthermore, it also elaborates the effects of ultrasonic-assisted curing on the tenderness, water retention, and flavor substances of the meat products during the curing process. Besides, the implication of the ultrasound in the processing of meat curation plays a potent role together with other technologies or methods. The use of ultrasound technology in the process of meat curation was analyzed, which might be a theoretical insight for the industrialization prospects of the meat product.


Assuntos
Produtos da Carne , Ultrassom , Carne/análise , Manipulação de Alimentos/métodos
13.
Int J Biol Macromol ; 272(Pt 2): 132880, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838893

RESUMO

In this study, the layer-by-layer adsorption behavior of sodium caseinate, pectin, and chitosan on the oil-water interface was illustrated using multi-frequency ultrasound. We investigated the impact of ultrasound on various factors, such as particle size, zeta potential, and interfacial protein/polysaccharide concentration. It was observed that ultrasound has significantly decreased droplet size and increased the surface area at the interface, hence promoting the adsorption of protein/polysaccharide. In the sonicated multilayer emulsion, the concentrations of interface proteins, pectin, and chitosan increased to 84.82 %, 90.49 %, and 83.31 %, respectively. The findings of the study indicated that the application of ultrasonic treatment had a significant impact on the emulsion's surface charge and the prevention of droplet aggregation. As a result, the stability of the emulsion system, including its resistance to salt, temperature, and storage conditions, has been significantly improved. Moreover, the emulsion showed an increase in the retention rate of lutein by 21.88 % after a high-temperature water bath and by 19.35 % after UV irradiation. Certainly, the multilayer emulsion treated with ultrasound demonstrated a superior and prolonged releasing behavior. These findings demonstrated the suitability of the ultrasound treatment for the preparation of emulsions to deliver bioactive compounds.


Assuntos
Emulsões , Luteína , Polissacarídeos , Emulsões/química , Luteína/química , Polissacarídeos/química , Quitosana/química , Tamanho da Partícula , Adsorção , Ondas Ultrassônicas , Pectinas/química , Caseínas/química , Proteínas/química , Temperatura
14.
Colloids Surf B Biointerfaces ; 234: 113709, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159329

RESUMO

A non-destructive technique known as multi-scale ultrasound (MSU) was employed to modify the emulsion consisting of glycosylated bovine whey protein (WP) and pullulan (Pu). To assess the effect on the structural and emulsifying properties of the WP-Pu, the formulated emulsion, was treated with divergent MSU at (single: 20 kHz, 40 kHz, and 60 kHz; dual: 20-40 kHz, 40-60 kHz, and 20-60 kHz; and tri: 20-40-60 kHz) frequency for a duration of 30 min. The tri-frequency, treated emulsion showed improved emulsifying stability compared to the control and MSU-treated single, and dual-frequency samples, as indicated by the particle size, structural morphology, and adsorbed protein. The molecular docking and numerous spectral analysis provided evidence that WP can undergo successful phenolation. This modified form of WP then interacts with Pu through various forces, including H-bonding and other mechanisms, resulting in the formation of a composite emulsion. The rheological properties revealed that both the control emulsion and the MSU-treated emulsion exhibited non-Newtonian pseudoplastic flow behavior. This behavior is characterized by shear thinning, where the viscosity decreases with increasing shear rate. The shear rates tested ranged from 1 to 300 1/s, additionally, the degree of crystallinity increased from 18.2° to 19.4°. Overall, the tri-frequency effect was most pronounced compared to single and dual-frequency. Ultrasonication, an emerging non-thermal technology, proves to be an efficient approach for the formulation of WP-Pu composites. These composites have significant potential for use in drug delivery systems and functional foods.


Assuntos
Glucanos , Polissacarídeos , Animais , Bovinos , Proteínas do Soro do Leite/química , Emulsões/química , Simulação de Acoplamento Molecular
15.
Nutrients ; 16(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398870

RESUMO

Several billion microorganisms reside in the gastrointestinal lumen, including viruses, bacteria, fungi, and yeast. Among them, probiotics were primarily used to cure digestive disorders such as intestinal infections and diarrhea; however, with a paradigm shift towards alleviating health through food, their importance is large. Moreover, recent studies have changed the perspective that probiotics prevent numerous ailments in the major organs. Probiotics primarily produce biologically active compounds targeting discommodious pathogens. This review demonstrates the implications of using probiotics from different genres to prevent and alleviate ailments in the primary human organs. The findings reveal that probiotics immediately activate anti-inflammatory mechanisms by producing anti-inflammatory cytokines such as interleukin (IL)-4, IL-10, IL-11, and IL-13, and hindering pro-inflammatory cytokines such as IL-1, IL-6, and TNF-α by involving regulatory T cells (Tregs) and T helper cells (Th cells). Several strains of Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus casei, Lactobacillus reuteri, Bifidobacterium longum, and Bifidobacterium breve have been listed among the probiotics that are excellent in alleviating various simple to complex ailments. Therefore, the importance of probiotics necessitates robust research to unveil the implications of probiotics, including the potency of strains, the optimal dosages, the combination of probiotics, their habitat in the host, the host response, and other pertinent factors.


Assuntos
Lacticaseibacillus casei , Probióticos , Humanos , Lactobacillus/fisiologia , Citocinas , Probióticos/uso terapêutico , Anti-Inflamatórios/farmacologia
16.
Food Res Int ; 187: 114432, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763680

RESUMO

Probiotics are subjected to various edible coatings, especially proteins and polysaccharides, which serve as the predominant wall materials, with ultrasound, a sustainable green technology. Herein, sodium caseinate, inulin, and soy protein isolate composites were produced using multi-frequency ultrasound and utilized to encapsulateLactiplantibacillus plantarumto enhance its storage, thermal, and gastrointestinal viability. The physicochemical analyses revealed that the composites with 5 % soy protein isolate treated with ultrasound at 50 kHz exhibited enough repulsion forces to maintain stability, pH resistance, and the ability to encapsulate larger particles and possessed the highest encapsulation efficiency (95.95 %). The structural analyses showed changes in the composite structure at CC, CH, CO, and amino acid residual levels. Rheology, texture, and water-holding capacity demonstrated the production of soft hydrogels with mild chewing and gummy properties, carried the microcapsules without coagulation or sedimentation. Moreover, the viability attributes ofL. plantarumevinced superior encapsulation, protecting them for at least eight weeks and against heat (63 °C), reactive oxidative species (H2O2), and GI conditions.


Assuntos
Carboximetilcelulose Sódica , Caseínas , Hidrogéis , Inulina , Probióticos , Proteínas de Soja , Proteínas de Soja/química , Hidrogéis/química , Caseínas/química , Carboximetilcelulose Sódica/química , Inulina/química , Inulina/farmacologia , Lactobacillus plantarum/metabolismo , Reologia , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Cápsulas
17.
Food Chem ; 457: 140048, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38917566

RESUMO

Clove essential oil (CEO) exhibited potent antibacterial efficacy and are obtained from Eugenia caryophyllata tree flower buds. Herein, CEO nanoemulsions were prepared using various concentrations of casein protein treated with ultrasound for different time interval. The study demonstrated that CEO nanoemulsions with 5% casein protein subjected to ultrasound for 10 min displayed the most minimal particle size. The pullulan­sodium alginate film incorporated with nanoemulsions treated with ultrasound exhibited enhanced physico-mechanical characteristics. Based on the structural analysis, the application of ultrasonic treatment improved intermolecular compatibility and organized molecular structure by strengthening hydrogen bonds. Furthermore, the composite film displayed remarkable efficacy against E. coli and S. aureus as well as longer retention of essential oils. The use of the developed films to protect cherry fruits and mushrooms produced promising results, emphasizing their potential in food packaging applications.

18.
Int J Biol Macromol ; 233: 123459, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36739046

RESUMO

New Pickering emulsion stabilizer LS/XG-NPs (Lotus root starch/xanthan gum nanoparticles) was prepared via autoclaving-cooling method followed by combination with XG. The LS/XG-NPs showed uniform and stable particles with particle size <500 nm, PDI <30, and zeta potential 30-40. The autoclaving-cooling treatment completely changed the crystalline form (from A-type to B-type) and structure of starch; hydrogen bonding and electrostatic interactions were proved to be existed between starch and XG in LS/XG-NPs. The addition of XG increased the contact angle of LS/XG-NPs from 58.79° to 85.42°. In the prepared Pickering emulsion, the LS/XG-NPs adsorbed well on the oil droplets surface, forming a three-dimensional gel network with evenly distributed oil droplets. The Pickering emulsion prepared with LS/XG-NPs showed excellent storage stability and auto-oxidation resistance; the EPA + DHA content in the emulsion remained at 92.46 % after 5 d of storage. The results of this study suggest that LS/XG-NPs have the potential to be food-grade Pickering emulsifiers that not only stabilize emulsions but also prevent emulsion oils from oxidizing.


Assuntos
Nanopartículas , Amido , Emulsões/química , Amido/química , Emulsificantes/química , Tamanho da Partícula , Nanopartículas/química
19.
Ultrason Sonochem ; 101: 106687, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37976566

RESUMO

Multi-frequency power ultrasound was applied as an environmentally friendly technique to control the nanoparticles (LS/XG-NPs) embedded with lotus root starch/xanthan gum, with the aim of enhancing the stability of Pickering emulsions. The present investigation was centered on evaluating the impact of ultrasound technology on various aspects of the emulsions, encompassing their mean particle size, particle size distribution, zeta potential, microstructure, rheological characteristics, and environmental stability. The findings of this study indicate that ultrasonic treatment enhanced the adsorption of LS/XG-NP onto oil droplets surface, resulting in a reduction in their size. Additionally, ultrasonic treatment decreased the viscosity and Brownian motion rate of the emulsion stabilized by LS/XG-NP, leading to increased fluidity. Furthermore, the emulsion's thermal stability and resistance to environmental oxidation were significantly enhanced through ultrasonic treatment. The Pickering emulsions that were prepared using ultrasound demonstrated excellent resistance to acid, alkali (pH 2-8) and salt ions (50-300 mM NaCl) for a period of 30 days during storage. It was worth anticipating that ultrasound-assisted LS/XG-NPs could efficiently retard the volatilization of fishy odor components within fish oil. Taken together, the present research has evinced the efficacy of ultrasound in enhancing the stability of Pickering emulsions coated with LS/XG-NPs. These findings offer significant novel insights into the advancement of ultrasound-assisted Pickering emulsions that are stabilized with starch-based or biopolymeric materials.

20.
Ultrason Sonochem ; 92: 106242, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459903

RESUMO

A novel food packaging film was developed by incorporating a tea polyphenols-loaded pullulan/trehalose (TP@Pul/Tre) into a composite film with ultrasound-assisted treatment of dual-frequency (20/35 kHz, 40 W/L) for 15 min to assess the physicochemical and mechanical properties of a composite film. The optimized ultrasound-assisted significantly increases elongation at break, tensile strength, and improves the composite film's UV/water/oxygen barrier properties. Structure analysis using attenuated total reflectance-Fourier transform infrared, X-ray diffraction and thermal stability revealed that these improvements were achieved through ultrasound-enhanced H-bonds, more ordered molecular arrangements, and good intermolecular compatibility. Besides, the ultrasound-assisted TP@Pul/Tre film has proven to have good antibacterial performance against Escherichia coli and Staphylococcus aureus, with approximately 100 % lethality at 4 h and 8 h, respectively. Moreover, the ultrasound-assisted TP@Pul/Tre film effectively delayed moisture loss, oxidative browning, decay, and deterioration in fresh-cut apples and pears, thereby extending their shelf life. Thus, ultrasound has proved to be an effective tool for improving the quality of food packaging films, with a wide range of applications.


Assuntos
Frutas , Trealose , Polifenóis/farmacologia , Glucanos/farmacologia , Glucanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA