Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36661848

RESUMO

The evolution of phenotypic plasticity plays an essential role in adaptive responses to climate change; however, its regulatory mechanisms in marine organisms which exhibit high phenotypic plasticity still remain poorly understood. The temperature-responsive trait oleic acid content and its major gene stearoyl-CoA desaturase (Scd) expression have diverged in two allopatric congeneric oyster species, cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. In this study, genetic and molecular methods were used to characterize fatty acid desaturation and membrane fluidity regulated by oyster Scd. Sixteen causative single-nucleotide polymorphisms (SNPs) were identified in the promoter/cis-region of the Scd between wild C. gigas and C. angulata. Further functional experiments showed that an SNP (g.-333C [C. gigas allele] >T [C. angulata allele]) may influence Scd transcription by creating/disrupting the binding motif of the positive trans-factor Y-box factor in C. gigas/C. angulata, which mediates the higher/lower constitutive expression of Scd in C. gigas/C. angulata. Additionally, the positive trans-factor sterol-regulatory element-binding proteins (Srebp) were identified to specifically bind to the promoter of Scd in both species, and were downregulated during cold stress in C. gigas compared to upregulated in C. angulata. This partly explains the relatively lower environmental sensitivity (plasticity) of Scd in C. gigas. This study serves as an experimental case to reveal that both cis- and trans-variations shape the diverged pattern of phenotypic plasticity, which provides new insights into the formation of adaptive traits and the prediction of the adaptive potential of marine organisms to future climate change.


Assuntos
Crassostrea , Estearoil-CoA Dessaturase , Animais , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Temperatura , Adaptação Fisiológica/genética , Polimorfismo de Nucleotídeo Único , Crassostrea/genética , Crassostrea/metabolismo
2.
Nature ; 490(7418): 49-54, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22992520

RESUMO

The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.


Assuntos
Adaptação Fisiológica/genética , Exoesqueleto/crescimento & desenvolvimento , Crassostrea/genética , Genoma/genética , Estresse Fisiológico/fisiologia , Exoesqueleto/química , Animais , Proteínas Reguladoras de Apoptose/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Genômica , Proteínas de Choque Térmico HSP70/genética , Humanos , Larva/genética , Larva/crescimento & desenvolvimento , Espectrometria de Massas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Polimorfismo Genético/genética , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Estresse Fisiológico/genética , Transcriptoma/genética
3.
Fish Shellfish Immunol ; 44(1): 147-55, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25700786

RESUMO

Apoptosis plays significant roles in maintenance of homeostasis, immune defense and development. The Bcl-2 family proteins are important regulators of the intrinsic apoptosis. In the study, we have characterized a Bcl-2-like gene (named CfBcl-2) and a Bax-like gene (named CfBax) from the Zhikong scallop Chlamys farreri. The full-length of the CfBcl-2 cDNA is 944 nucleotides (nt) encoding a putative protein of 225 amino acid residues (aa) that contains four Bcl-2 homology (BH) domains, and the CfBax cDNA is 505 nt encoding a putative protein of 115 aa that contains three Bcl-2 BH domains. Sequence and phylogenetic analysis demonstrate that CfBcl-2 and CfBax present typical domain organization of the corresponding Bcl-2 related proteins and are more similar and clustered with their homologues of other molluscs. The two genes are ubiquitously expressed in six tissues of C. farreri, with the highest expression level of CfBcl-2 in adductor muscle and highest expression level of CfBax in gill. The expressions of CfBcl-2 and CfBax in hemocytes were both significantly up-regulated after an in vivo exposure of scallops to air, injection with lipopolysaccharide and infection with acute viral necrobiotic disease virus, and the expression patterns of the two genes after the three treatments vary in different change magnitude and up-regulation timespan. Yeast two-hybrid assay reveals a direct interaction between the CfBcl-2 and CfBax proteins. These results indicate that the CfBcl-2 and CfBax may participate in the apoptosis-based stress and immune responses against noxious stimulation.


Assuntos
Pectinidae/genética , Pectinidae/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Dados de Sequência Molecular , Pectinidae/metabolismo , Filogenia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Alinhamento de Sequência , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
4.
BMC Genomics ; 15: 1119, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25514978

RESUMO

BACKGROUND: Studies of DNA methylomes in a wide range of eukaryotes have revealed both conserved and divergent characteristics of DNA methylation among phylogenetic groups. However, data on invertebrates particularly molluscs are limited, which hinders our understanding of the evolution of DNA methylation in metazoa. The sequencing of the Pacific oyster Crassostrea gigas genome provides an opportunity for genome-wide profiling of DNA methylation in this model mollusc. RESULTS: Homologous searches against the C. gigas genome identified functional orthologs for key genes involved in DNA methylation: DNMT1, DNMT2, DNMT3, MBD2/3 and UHRF1. Whole-genome bisulfite sequencing (BS-seq) of the oyster's mantle tissues revealed that more than 99% methylation modification was restricted to cytosines in CpG context and methylated CpGs accumulated in the bodies of genes that were moderately expressed. Young repeat elements were another major targets of CpG methylation in oysters. Comparison with other invertebrate methylomes suggested that the 5'-end bias of gene body methylation and the negative correlation between gene body methylation and gene length were the derived features probably limited to the insect lineage. Interestingly, phylostratigraphic analysis showed that CpG methylation preferentially targeted genes originating in the common ancestor of eukaryotes rather than the oldest genes originating in the common ancestor of cellular organisms. CONCLUSIONS: Comparative analysis of the oyster DNA methylomes and that of other animal species revealed that the characteristics of DNA methylation were generally conserved during invertebrate evolution, while some unique features were derived in the insect lineage. The preference of methylation modification on genes originating in the eukaryotic ancestor rather than the oldest genes is unexpected, probably implying that the emergence of methylation regulation in these 'relatively young' genes was critical for the origin and radiation of eukaryotes.


Assuntos
Crassostrea/genética , Metilação de DNA , Genoma , Invertebrados/genética , Animais , Evolução Biológica , Proteínas Estimuladoras de Ligação a CCAAT/genética , Ilhas de CpG , Crassostrea/classificação , DNA/química , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Proteínas de Ligação a DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Invertebrados/classificação , Filogenia , Análise de Sequência de DNA
5.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37787064

RESUMO

BACKGROUND: The Portuguese oyster Crassostrea angulata and the Pacific oyster C. gigas are two major Crassostrea species that are naturally distributed along the Northwest Pacific coast and possess great ecological and economic value. Here, we report the construction and comparative analysis of the chromosome-level haplotype-resolved genomes of the two oyster congeners. FINDINGS: Based on a trio-binning strategy, the PacBio high-fidelity and Illumina Hi-C reads of the offspring of the hybrid cross C. angulata (♂) × C. gigas (♀) were partitioned and independently assembled to construct two chromosome-level fully phased genomes. The assembly size (contig N50 size, BUSCO completeness) of the two genomes were 582.4 M (12.8 M, 99.1%) and 606.4 M (5.46 M, 98.9%) for C. angulata and C. gigas, respectively, ranking at the top of mollusk genomes with high contiguity and integrity. The general features of the two genomes were highly similar, and 15,475 highly conserved ortholog gene pairs shared identical gene structures and similar genomic locations. Highly similar sequences can be primarily identified in the coding regions, whereas most noncoding regions and introns of genes in the same ortholog group contain substantial small genomic and/or structural variations. Based on population resequencing analysis, a total of 2,756 species-specific single-nucleotide polymorphisms and 1,088 genes possibly under selection were identified. CONCLUSIONS: This is the first report of trio-binned fully phased chromosome-level genomes in marine invertebrates. The study provides fundamental resources for the research on mollusk genetics, comparative genomics, and molecular evolution.


Assuntos
Crassostrea , Animais , Crassostrea/genética , Haplótipos , Genoma , Cromossomos/genética , Polimorfismo de Nucleotídeo Único
6.
Mol Ecol Resour ; 21(5): 1670-1685, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33655634

RESUMO

The Pacific oyster (Crassostrea gigas) is a widely distributed marine bivalve of great ecological and economic importance. In this study, we provide a high-quality chromosome-level genome assembled using Pacific Bioscience long reads and Hi-C-based and linkage-map-based scaffolding technologies and a high-resolution variation map constructed using large-scale resequencing analysis. The 586.8 Mb genome consists of 10 pseudochromosome sequences ranging from 38.6 to 78.9 Mb, containing 301 contigs with an N50 size of 3.1 Mb. A total of 30,078 protein-coding genes were predicted, of which 22,757 (75.7%) were high-reliability annotations supported by a homologous match to a curated protein in the SWISS-PROT database or transcript expression. Although a medium level of repeat components (57.2%) was detected, the genomic content of the segmental duplications reached 26.2%, which is the highest among the reported genomes. By whole genome resequencing analysis of 495 Pacific oysters, a comprehensive variation map was built, comprised of 4.78 million single nucleotide polymorphisms, 0.60 million short insertions and deletions, and 49,333 copy number variation regions. The structural variations can lead to an average interindividual genomic divergence of 0.21, indicating their crucial role in shaping the Pacific oyster genome diversity. The large amount of mosaic distributed repeat elements, small variations, and copy number variations indicate that the Pacific oyster is a diploid organism with an extremely high genomic complexity at the intra- and interindividual level. The genome and variation maps can improve our understanding of oyster genome diversity and enrich the resources for oyster molecular evolution, comparative genomics, and genetic research.


Assuntos
Mapeamento Cromossômico , Crassostrea , Genoma , Animais , Cromossomos , Crassostrea/genética , Variações do Número de Cópias de DNA , Mutação INDEL , Polimorfismo de Nucleotídeo Único
7.
Front Physiol ; 12: 663023, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967834

RESUMO

The Pacific oyster is a globally important aquaculture species inhabiting the intertidal environment, which experiences great temperature variation. Mass deaths in the summer pose a major challenge for the oyster industry. We initiated an artificial selection breeding program in 2017 using acute heat shock treatments of the parents to select for thermotolerance in oysters. In this study, we compared the respiration rate, summer survival rate, gene expression, and gene structure of F2 selected oysters and non-selected wild oysters. A transcriptional analysis revealed global divergence between the selected and control groups at the larval stage, including 4764 differentially expressed genes, among which 79 genes were heat-responsive genes. Five heat shock proteins were enriched, and four of the six genes (five heat stock genes in the enriched GO terms and KEGG pathways and BAG4) were differentially expressed in 1-year-old oysters. Integration of the transcriptomic and re-sequencing data of the selected and the control groups revealed 1090 genes that differentiated in both gene structure and expression. Two SNPs (single nucleotide polymorphism) that may mediate the expression of CGI_10022585 and CGI_10024709 were validated. In addition, the respiration rate of 1-year-old oysters varied significantly between the selected group and the control group at room temperature (20°C). And the summer survival rate of the selected population was significantly improved. This study not only shows that artificial selection has a significant effect on the gene structure and expression of oysters, but it also helps reveal the mechanism underlying their tolerance of high temperature as well as the ability of oysters to adapt to climate change.

8.
Mol Biol Rep ; 37(8): 3779-84, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20217241

RESUMO

Useful and novel DNA markers are needed for aquaculture genetics and breeding. In this study, we report the discovery and development of gene-targeted single nucleotide polymorphisms (SNPs) for genomic mapping in the Pacific abalone Haliotis discus hannai Ino. Single EST or EST-contigs from 66 genes that had positive BLASTx matches (E-value ≤ 1e-8) were used for polymerase chain reaction (PCR) amplification. PCR products from the two parents of one mapping family were directly sequenced, and 83 SNP loci were found from 17 genes. Allele-specific PCR (AS-PCR) was developed and optimized for genotyping of 11 SNP loci in 120 progeny of the mapping family. Nine of the loci conformed to the expected Mendelian ratio of 1:1 based on the χ(2) test (P > 0.05) and could potentially be used for linkage map construction. Our data also indicate that the sequencing of two parents may be a practical strategy for the discovery of informative SNPs for linkage mapping in a particular mapping population.


Assuntos
Mapeamento Cromossômico/métodos , Gastrópodes/genética , Genoma/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Animais , Segregação de Cromossomos/genética , Primers do DNA/metabolismo , Loci Gênicos/genética , Marcadores Genéticos , Genótipo , Oceano Pacífico , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
9.
Front Genet ; 11: 581725, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193707

RESUMO

Heat shock transcription factor 1 (HSF1) plays an important role in regulating heat shock, which can activate heat shock proteins (HSPs). HSPs can protect organisms from thermal stress. Oysters in the intertidal zone can tolerate thermal stress. The Pacific oyster (Crassostrea gigas gigas) and Fujian oyster (C. gigas angulata)-allopatric subspecies with distinct thermal tolerances-make good study specimens for analyzing and comparing thermal stress regulation. We cloned and compared HSF1 isoforms, which is highly expressed under heat shock conditions in the two subspecies. The results revealed that two isoforms (HSF1a and HSF1d) respond to heat shock in both Pacific and Fujian oysters, and different heat shock conditions led to various combinations of isoforms. Subcellular localization showed that isoforms gathered in the nucleus when exposed to heat shock. The co-immunoprecipitation revealed that HSF1d can be a dimer. In addition, we selected HSPs that are expressed under the heat shock response, according to the RNA-seq and proteomic analyses. For the HSPs, we analyzed the coding part and the promoter sequences. The result showed that the domains of HSPs are conserved in two subspecies, but the promoters are significantly different. The Dual-Luciferase assay showed that the induced expression isoform HSF1d had the highest activity in C. gigas gigas, while the constitutively-expressed HSF1a was most active in C. gigas angulata. In addition, variation in the level of HSP promoters appeared to be correlated with gene expression. We argue that this gene is regulated based on the different expression levels between the two subspecies' responses to heat shock. In summary, various stress conditions can yield different HSF1 isoforms and respond to heat shock in both oyster subspecies. Differences in how the isoforms and promoter are activated may contribute to their differential expressions. Overall, the results comparing C. gigas gigas and C. gigas angulata suggest that these isoforms have a regulatory relationship under heat shock, providing valuable information on the thermal tolerance mechanism in these commercially important oyster species.

10.
Nat Ecol Evol ; 2(11): 1751-1760, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30250157

RESUMO

The interplay between divergence and phenotypic plasticity is critical to our understanding of a species' adaptive potential under rapid climate changes. We investigated divergence and plasticity in natural populations of the Pacific oyster Crassostrea gigas with a congeneric oyster Crassostrea angulata from southern China used as an outgroup. Genome re-sequencing of 371 oysters revealed unexpected genetic divergence in a small area that coincided with phenotypic divergence in growth, physiology, heat tolerance and gene expression across environmental gradients. These findings suggest that selection and local adaptation are pervasive and, together with limited gene flow, influence population structure. Genes showing sequence differentiation between populations also diverged in transcriptional response to heat stress. Plasticity in gene expression is positively correlated with evolved divergence, indicating that plasticity is adaptive and favoured by organisms under dynamic environments. Divergence in heat tolerance-partly through acetylation-mediated energy depression-implies differentiation in adaptive potential. Trade-offs between growth and survival may play an important role in local adaptation of oysters and other marine invertebrates.


Assuntos
Adaptação Fisiológica , Crassostrea/fisiologia , Expressão Gênica , Variação Genética , Genoma , Animais , Crassostrea/genética
11.
PLoS One ; 12(3): e0174007, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28328985

RESUMO

Single nucleotide polymorphisms (SNPs) are widely used in genetics and genomics research. The Pacific oyster (Crassostrea gigas) is an economically and ecologically important marine bivalve, and it possesses one of the highest levels of genomic DNA variation among animal species. Pacific oyster SNPs have been extensively investigated; however, the mechanisms by which these SNPs may be used in a high-throughput, transferable, and economical manner remain to be elucidated. Here, we constructed an oyster 190K SNP array using Affymetrix Axiom genotyping technology. We designed 190,420 SNPs on the chip; these SNPs were selected from 54 million SNPs identified through re-sequencing of 472 Pacific oysters collected in China, Japan, Korea, and Canada. Our genotyping results indicated that 133,984 (70.4%) SNPs were polymorphic and successfully converted on the chip. The SNPs were distributed evenly throughout the oyster genome, located in 3,595 scaffolds with a length of ~509.4 million; the average interval spacing was 4,210 bp. In addition, 111,158 SNPs were distributed in 21,050 coding genes, with an average of 5.3 SNPs per gene. In comparison with genotypes obtained through re-sequencing, ~69% of the converted SNPs had a concordance rate of >0.971; the mean concordance rate was 0.966. Evaluation based on genotypes of full-sib family individuals revealed that the average genotyping accuracy rate was 0.975. Carrying 133 K polymorphic SNPs, our oyster 190K SNP array is the first commercially available high-density SNP chip for mollusks, with the highest throughput. It represents a valuable tool for oyster genome-wide association studies, fine linkage mapping, and population genetics.


Assuntos
Crassostrea/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Canadá , China , Mapeamento Cromossômico/métodos , Genoma/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Japão , Análise de Sequência com Séries de Oligonucleotídeos/métodos , República da Coreia , Análise de Sequência de DNA/métodos , Frutos do Mar
12.
Dev Comp Immunol ; 60: 1-11, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26875631

RESUMO

The proteins of inhibitor of apoptosis (IAP) family play important roles in regulation of apoptosis, immunological response and cell proliferation. Here we reported two IAP genes (named CfIAP1 and CfIAP2) in Zhikong scallop Chlamys farreri. The full-length CfIAP1 cDNA contained 1552 nucleotides, encoding a predicted protein of 251 amino acids with two BIR domains. The full-length CfIAP2 cDNA contained 1243 nt, encoding a 356-aa protein with one BIR domain and one RING domain. The two genes are ubiquitously expressed in six types of tissue of C. farreri. The expression levels of CfIAP1 and CfIAP2 were significantly up-regulated after challenged with acute viral necrobiotic disease virus, lipopolysaccharide and exposure to air. Subcellular localization assay showed that CfIAP1 was mainly distributed in cytoplasm and CfIAP2 was in cytoplasm and nucleus. As assessed using a kit designed to test Caspase3 function in mammalian cells, the activity of CfCaspase3 was enhanced as a result of the down-regulation of CfIAP2 expression by dsRNA-mediated gene silencing. Our study indicated that CfIAP1 and CfIAP2 may participate in the innate immunity and stress responses and that CfIAP2 might block apoptosis via inhibiting CfCaspase3 indirectly through an unexplored mechanism in C. farreri.


Assuntos
Proteínas Inibidoras de Apoptose/genética , Pectinidae/genética , Sequência de Aminoácidos , Animais , Apoptose , Sequência de Bases , Hipóxia Celular , Núcleo Celular/metabolismo , Sequência Conservada , Expressão Gênica , Células HeLa , Humanos , Imunidade Inata , Lipopolissacarídeos/farmacologia , Especificidade de Órgãos , Pectinidae/citologia , Pectinidae/imunologia , Pectinidae/metabolismo , Filogenia , Domínios Proteicos , Transporte Proteico , Ativação Transcricional/imunologia
13.
Annu Rev Anim Biosci ; 4: 357-81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26515272

RESUMO

Oysters that occupy estuarine and intertidal habitats have well-developed stress tolerance mechanisms to tolerate harsh and dynamically changing environments. In this review, we summarize common pathways and genomic features in oyster that are responsive to environmental stressors such as temperature, salinity, hypoxia, air exposure, pathogens, and anthropogenic pollutions. We first introduce the key genes involved in several pathways, which constitute the molecular basis for adaptation to stress. We use genome analysis to highlight the strong cellular homeostasis system, a unique adaptive characteristic of oysters. Next, we provide a global view of features of the oyster genome that contribute to stress adaptation, including oyster-specific gene expansion, highly inducible expression, and functional divergence. Finally, we review the consequences of interactions between oysters and the environment from ecological and evolutionary perspectives by discussing mass mortality and adaptive divergence among populations and related species of the genus Crassostrea. We conclude with prospects for future study.


Assuntos
Adaptação Fisiológica/genética , Crassostrea/genética , Genoma/genética , Genômica , Animais , Antioxidantes/metabolismo , Evolução Biológica , Crassostrea/imunologia , Crassostrea/microbiologia , Crassostrea/fisiologia , Ecologia , Ecossistema , Metabolismo Energético , Imunidade Inata , Salinidade , Transdução de Sinais , Estresse Fisiológico , Temperatura
14.
PLoS One ; 10(5): e0124401, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951187

RESUMO

BACKGROUND: The Pacific oyster Crassostrea gigas is an important cultivated shellfish that is rich in nutrients. It contains high levels of glycogen, which is of high nutritional value. To investigate the genetic basis of this high glycogen content and its variation, we conducted a candidate gene association analysis using a wild population, and confirmed our results using an independent population, via targeted gene resequencing and mRNA expression analysis. RESULTS: We validated 295 SNPs in the 90 candidate genes surveyed for association with glycogen content, 86 of were ultimately genotyped in all 144 experimental individuals from Jiaonan (JN). In addition, 732 SNPs were genotyped via targeted gene resequencing. Two SNPs (Cg_SNP_TY202 and Cg_SNP_3021) in Cg_GD1 (glycogen debranching enzyme) and one SNP (Cg_SNP_4) in Cg_GP1 (glycogen phosphorylase) were identified as being associated with glycogen content. The glycogen content of individuals with genotypes TT and TC in Cg_SNP_TY202 was higher than that of individuals with genotype CC. The transcript abundance of both glycogen-associated genes was differentially expressed in high glycogen content and low glycogen content individuals. CONCLUSIONS: This study identified three polymorphisms in two genes associated with oyster glycogen content, via candidate gene association analysis. The transcript abundance differences in Cg_GD1 and Cg_GP1 between low- and the high-glycogen content individuals suggests that it is possible that transcript regulation is mediated by variations of Cg_SNP_TY202, Cg_SNP_3021, and Cg_SNP_4. These findings will not only provide insights into the genetic basis of oyster quality, but also promote research into the molecular breeding of oysters.


Assuntos
Crassostrea/genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Glicogênio Fosforilase/genética , Glicogênio/metabolismo , Polimorfismo de Nucleotídeo Único , Animais , Crassostrea/química , Perfilação da Expressão Gênica , Estudos de Associação Genética , Genótipo
15.
Mol Ecol Resour ; 15(1): 123-35, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24823694

RESUMO

The economic and ecological importance of the oyster necessitates further research on the molecular mechanisms, which both regulate the commercially important traits of the oyster and help it to survive in the variable marine environment. Single nucleotide polymorphisms (SNPs) have been widely used to assess genetic variation and identify genes underlying target traits. In addition, high-resolution melting (HRM) analysis is a potentially powerful method for validating candidate SNPs. In this study, we adopted a rapid and efficient pipeline for the screening and validation of SNPs in the genic region of Crassostrea gigas based on transcriptome sequencing and HRM analysis. Transcriptomes of three wild oyster populations were sequenced using Illumina sequencing technology. In total, 50-60 million short reads, corresponding to 4.5-5.4 Gbp, from each population were aligned to the oyster genome, and 5.8 × 10(5) SNPs were putatively identified, resulting in a predicted SNP every 47 nucleotides on average. The putative SNPs were unevenly distributed in the genome and high-density (≥2%), nonsynonymous coding SNPs were enriched in genes related to apoptosis and responses to biotic stimuli. Subsequently, 1,671 loci were detected by HRM analysis, accounting for 64.7% of the total selected candidate primers, and finally, 1,301 polymorphic SNP markers were developed based on HRM analysis. All of the validated SNPs were distributed into 897 genes and located in 672 scaffolds, and 275 of these genes were stress inducible under unfavourable salinity, temperature, and exposure to air and heavy metals. The validated SNPs in this study provide valuable molecular markers for genetic mapping and characterization of important traits in oysters.


Assuntos
Crassostrea/genética , Polimorfismo de Nucleotídeo Único , Animais , Análise de Sequência de DNA , Transcriptoma , Temperatura de Transição
16.
Electron. j. biotechnol ; 19(3): 36-42, May 2016. ilus
Artigo em Inglês | LILACS | ID: lil-787005

RESUMO

Background: Reduced-representation sequencing technology is widely used in genotyping for its economical and efficient features. A popular way to construct the reduced-representation sequencing libraries is to digest the genomic DNA with restriction enzymes. A key factor of this method is to determine the restriction enzyme(s). But there are few computer programs which can evaluate the usability of restriction enzymes in reduced-representation sequencing. SimRAD is an R package which can simulate the digestion of DNA sequence by restriction enzymes and return enzyme loci number as well as fragment number. But for linkage mapping analysis, enzyme loci distribution is also an important factor to evaluate the enzyme. For phylogenetic studies, comparison of the enzyme performance across multiple genomes is important. It is strongly needed to develop a simulation tool to implement these functions. Results: Here, we introduce a Perl module named RestrictionDigest with more functions and improved performance. It can analyze multiple genomes at one run and generate concise comparison of enzyme performance across the genomes. It can simulate single-enzyme digestion, double-enzyme digestion and size selection process and generate comprehensive information of the simulation including enzyme loci number, fragment number, sequences of the fragments, positions of restriction sites on the genome, the coverage of digested fragments on different genome regions and detailed fragment length distribution. Conclusions: RestrictionDigest is an easy-to-use Perl module with flexible parameter settings. With the help of the information produced by the module, researchers can easily determine the most appropriate enzymes to construct the reduced-representation libraries to meet their experimental requirements.


Assuntos
Software , Genoma , Sequenciamento Completo do Genoma/métodos , Simulação por Computador , Biblioteca Genômica
17.
Mol Ecol Resour ; 8(5): 974-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21585945

RESUMO

We report here for the first time 12 polymorphic single nucleotide polymorphisms (SNPs) in a commercially important gastropod, Pacific abalone (Haliotis discus hannai) that were identified by searching expressed sequence tag database. These SNP loci (seven nuclear and five mitochondrial SNPs) were polymorphic among 37 wild abalone individuals, based on a four-primer allele-specific polymerase chain reaction analysis. All loci had two alleles and the minor allele frequency ranged from 0.027 to 0.473. For the seven nuclear SNPs, the expected and observed heterozygosities ranged from 0.053 to 0.499 and from 0.054 to 0.811, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA