Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 21(12): 4944-4949, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34102057

RESUMO

The measurement of electrical activity across systems of excitable cells underlies current progress in neuroscience, cardiac pharmacology, and neurotechnology. However, bioelectricity spans orders of magnitude in intensity, space, and time, posing substantial technological challenges. The development of methods permitting network-scale recordings with high spatial resolution remains key to studies of electrogenic cells, emergent networks, and bioelectric computation. Here, we demonstrate single-shot and label-free imaging of extracellular potentials with high resolution across a wide field-of-view. The critically coupled waveguide-amplified graphene electric field (CAGE) sensor leverages the field-sensitive optical transitions in graphene to convert electric potentials into the optical regime. As a proof-of-concept, we use the CAGE sensor to detect native electrical activity from cardiac action potentials with tens-of-microns resolution, simultaneously map the propagation of these potentials at tissue-scale, and monitor their modification by pharmacological agents. This platform is robust, scalable, and compatible with existing microscopy techniques for multimodal correlative imaging.


Assuntos
Grafite , Potenciais de Ação , Fenômenos Eletrofisiológicos , Coração , Microscopia
2.
Nat Neurosci ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956164

RESUMO

Here we conducted wireless electrophysiological recording of hippocampal neurons from Egyptian fruit bats in the presence of human experimenters. In flying bats, many neurons modulated their activity depending on the identity of the human at the landing target. In stationary bats, many neurons carried significant spatial information about the position and identity of humans traversing the environment. Our results reveal that hippocampal activity is robustly modulated by the presence, movement and identity of human experimenters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA