Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(46): 18982-18989, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37939313

RESUMO

A series of Cp*Ir (Cp* = pentamethylcyclopentadienyl) complexes with amidated 8-aminoquinoline ligands were synthesized and tested for formic acid (FA) dehydrogenation. These complexes showed improved activities compared to pristine 8-anminquinoline (L1). Specially, amidation changed the outer coordination sphere of the complex (3) bearing N-8-quinolinylformamide (L3), and 3 was proved to be a proton-responsive catalyst. Our experimental results and DFT calculations demonstrated that the deprotonated carbanion in L3 could interact with a water molecule to stabilize the transition states and lower the reaction energy barrier, which improved the reaction activity. A turnover frequency of 206250 h-1 was achieved by 3 under optimized conditions. This study presents a method to develop new ligands and modify the existing ligands for efficient FA dehydrogenation.

2.
J Environ Manage ; 337: 117749, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36940603

RESUMO

Opal (SiO2·nH2O, amorphous silica), the by-product of alumina extraction from coal fly ash (CFA), has a strong adsorption capacity and is also an important component of clay minerals in soils. The combining of opal with sand to form artificial soils is an effective disposal strategy for large-scale CFA stockpiles and reduction of environmental risk. Nevertheless, its poor physical condition limits plant growth. Organic matter (OM) amendments have broad potential applications for water-holding and improving soil aggregation. Effects of OMs (vermicompost (VC), bagasse (BA), biochar (BC) and humic acid (HA)) on the formation, stability and pore characteristics of opal/sand aggregates were evaluated through 60-day laboratory incubation experiments. Results demonstrated that four OMs could reduce pH, with BC having the most significant effect, VC significantly increasing the electrical conductivity (EC) and TOC content of the aggregates. Except for HA, other OMs could improve the aggregates' water-holding capacity. The mean weight diameter (MWD) and percentage of >0.25 mm aggregates (R0.25) of BA-treated aggregates were the largest, and BA had the most noticeable contribution to macro-aggregate's formation. The best aggregate stability was obtained with HA treatment, meanwhile the percentage of aggregate destruction (PAD0.25) decreased with the addition of HA. After amendments, the proportion of organic functional groups increased, which favored aggregate's formation and stability; the surface pore characteristics were improved, with the porosity ranging from 70% to 75%, reaching the level of well-structured soil. Overall, the addition of VC and HA can effectively promote aggregates' formation and stabilization. This research may play a key role in converting CFA or opal into artificial soil. The combining of opal with sand to form artificial soil will not only solve the environmental problems caused by large-scale CFA stockpiles but will also enable the comprehensive utilization of siliceous materials in agriculture.


Assuntos
Areia , Dióxido de Silício , Solo/química , Água
3.
Bull Environ Contam Toxicol ; 109(1): 163-168, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35394141

RESUMO

The hydrothermal hydrogen reduction process for treating high-iron bauxite residue (red mud) was investigated, and the optimum conditions of alumina extraction as well as the enrichment of iron minerals were verified by experiments. Results show that the surface magnetization of Al-goethite under the function of hydrogen reduction accelerates its conversion to hematite and/or magnetite. This conversion releases the substituted Al in goethite as well as the undigested gibbsite/boehmite and further enriches the iron content in residue. After hydrothermal hydrogen reduction with H2/Red mud ratio of 0.085 mol/20 g at 270°C for 60 min, the alumina relative recovery ratio reaches 95.40% and the grade of iron (total iron in the form of iron element) in the residue can be enriched to 55.85%. Further, co-processing of the obtained iron-rich residue in the steel industry can achieve a significant reduction of red mud discharge.


Assuntos
Óxido de Alumínio , Hidrogênio , Ferro/química
4.
Dalton Trans ; 52(15): 4856-4861, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939828

RESUMO

New Ir complexes bearing N-(methylsulfonyl)-2-pyridinecarboxamide (C1) and N-(phenylsulfonyl)-2-pyridinecarboxamide (C2) were employed as catalysts for aqueous formic acid dehydrogenation (FADH). The ligands were designed to maintain the picolinamide skeleton and introduce strong sigma sulfonamide moieties. C1 and C2 exhibited good stability towards air and concentrated formic acid (FA). During 20 continuous cycles, C1 and C2 could achieve the complete conversion of FA with TONs of 172 916 and 172 187, respectively. C1 achieved a high TOF of 19 500 h-1 at 90 °C and an air-stable Ir-H species was observed by 1H NMR spectroscopy.

5.
RSC Adv ; 12(7): 4162-4174, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35425423

RESUMO

The conversion of Al-substituted goethite (Al-goethite) to hematite in gibbsitic bauxite is conducive to alumina extraction during the Bayer process and the enrichment of iron minerals in red mud. In this work, mineralogical characteristics of gibbsitic bauxite were identified by AMICS analysis, and the low-temperature thermal conversion behavior of both synthetic Al-goethite and natural Al-goethite in gibbsitic bauxite were investigated through thermal gravity analysis, phase transformation, and microstructure studies. Results show that the proportion of aluminum in Al-goethite reached 12.68% of the total aluminum content in gibbsitic bauxite. The conversion of synthetic Al-goethite to hematite starts at ∼280 °C, while that of natural Al-goethite starts at ∼320 °C, and the addition of NaOH can accelerate the conversion. The formed hematite inherits the needle-like appearance of the original Al-goethite, has many holes on the surface due to dehydroxylation, and no migration of aluminum elements occurs during the roasting process, indicating that Al-goethite transformed into porous Al-substituted hematite (Al-hematite), which is beneficial to the extraction of the aluminum retained in the hematite structure during Bayer digestion. To confirm the above results, digestion experiments (without or with roasting for typical Bayer digestion or low-temperature roasting-Bayer digestion) were carried out with gibbsitic bauxite and the one roasted at 400 °C for 30 min as raw materials, respectively. Compared to the typical Bayer digestion, the relative alumina recovery of low-temperature roasting-Bayer digestion increased from 90.06% to 95.65%, the red mud yield decreased from 36.32% to 34.08%, and the grade of Fe in red mud increased from 48.45% to 52.88% at 270 °C for 60 min. Enhanced transformation of Al-goethite significantly improves alumina recovery and the resultant iron-rich red mud can be easily co-processed in the steel industry, thus significant emission reduction of red mud from the Bayer system might be achieved.

6.
RSC Adv ; 12(8): 4562-4571, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35425491

RESUMO

Fine activated alumina (FAA) acting as an adsorbent for phosphate was synthesized from an industrial sodium aluminate solution based on phase evolution from Al(OH)3 and NH4Al(OH)2CO3. This material was obtained in the form of γ-Al2O3 with an open mesoporous structure and a specific surface area of 648.02 m2 g-1. The phosphate adsorption capacity of the FAA gradually increased with increases in phosphate concentration or contact time. The maximum adsorption capacity was 261.66 mg g-1 when phosphate was present as H2PO4 - at a pH of 5.0. A removal efficiency of over 96% was achieved in a 50 mg L-1 phosphate solution. The adsorption of phosphate anions could be explained using non-linear Langmuir or Freundlich isotherm models and a pseudo-second-order kinetic model. Tetra-coordinate AlO4 sites acting as Lewis acids resulted in some chemisorption, while (O) n Al(OH)2 + (n = 4, 5, 6) Brønsted acid groups generated by the protonation of AlO4 or AlO6 sites in the FAA led to physisorption. Analyses of aluminum-oxygen coordination units using Fourier transform infrared and X-ray photoelectron spectroscopy demonstrated that physisorption was predominant. Minimal chemisorption was also verified by the significant desorption rate observed in dilute NaOH solutions and the high performance of the regenerated FAA. The high specific surface area, many open mesopores and numerous highly active tetra-coordinate AlO4 sites on the FAA all synergistically contributed to its exceptional adsorption capacity.

7.
ChemSusChem ; 14(13): 2655-2681, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-33963668

RESUMO

Hydrogen can be used as an energy carrier for renewable energy to overcome the deficiency of its intrinsically intermittent supply. One of the most promising application of hydrogen energy is on-board hydrogen fuel cells. However, the lack of a safe, efficient, convenient, and low-cost storage and transportation method for hydrogen limits their application. The feasibility of mainstream hydrogen storage techniques for application in vehicles is briefly discussed in this Review. Formic acid (FA), which can reversibly be converted into hydrogen and carbon dioxide through catalysis, has significant potential for practical application. Historic developments and recent examples of homogeneous noble metal catalysts for FA dehydrogenation are covered, and the catalysts are classified based on their ligand types. The Review primarily focuses on the structure-function relationship between the ligands and their reactivity and aims to provide suggestions for designing new and efficient catalysts for H2 generation from FA.

8.
Waste Manag ; 87: 798-804, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109584

RESUMO

Although circulating fluidized bed (CFB) combustion technology is regarded as an efficient technology to use abundant coal gangue as fuel, large amounts of CFB slag has to be stockpiled and raises the environmental stress. This work focused on the comprehensive utilization of silica and alumina in CFB slag. The combustion process of coal gangue and the subsequent separation of alumina and silica by alkaline leaching of the simulated CFB slag were investigated. The results show that, in the combustion process, kaolinite in coal gangue firstly converts into meta-kaolinite at 600-900 °C due to dehydroxylation, and then the meta-kaolinite splits into mullite and amorphous silica at ≥1000 °C. Whereas by reduction roasting with hematite, the CFB slag simulated at 800-1100 °C can be completely converted into hercynite and free silica in forms of quartz solid solution and cristobalite solid solution. However, the conversion reaction rate for the CFB slag simulated at 1200 °C decreases significantly due to the formation of well crystallized mullite prior to the reduction roasting. Additionally, either quartz solid solution or cristobalite solid solution is readily soluble and hercynite is insoluble in alkaline solution. Under optimal conditions, more than 95% of silica in the reduction roasted product can be dissolved in alkaline solution and the mass ratio of alumina to silica in the leached residue can increase from 0.85 to above 20. This study lays a foundation for developing a novel technique to efficiently recycle the carbon, silica and alumina in coal gangue and thus to alleviate the environmental stress.


Assuntos
Óxido de Alumínio , Dióxido de Silício , Carbono , Carvão Mineral
9.
RSC Adv ; 9(10): 5628-5638, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35515928

RESUMO

Fine active alumina (FAA) with a high specific surface area (SSA) is used in catalysis, adsorbents and other applications. This study presents a novel method of preparing high surface area FAA via a phase evolution from gibbsite through ammonium aluminum carbonate hydroxide (AACH) to FAA. Thermodynamic calculations showed that increasing the pH and (NH4)2CO3 concentration both promoted the transformation of gibbsite to AACH. Fine gibbsite precipitated from a sodium aluminate solution could thus be efficiently changed to AACH and subsequently to FAA. Minimal particle aggregation was achieved from gibbsite to AACH to FAA owing to the filling of capillaries by NH3 and CO2, the formation of boehmite and interfacial hydrophobicity. Furthermore, capillary pressures of 1.25-46.56 MPa during the AACH roasting process prevented the collapse of mesopores. The high capillary pressure, numerous open mesopores, and inhibition of aggregation produced FAA with an extremely high SSA. The SSA of FAA was as high as 1088.72 m2 g-1 following the roasting of AACH at 300 °C for 180 min. This FAA was demonstrated to remove phosphate from wastewater with an adsorption capacity of 300.28 mg g-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA