Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7386, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968294

RESUMO

Gas permeation through nanopores is a long-standing research interest because of its importance in fundamental science and many technologies. The free molecular flow is conventionally described by Knudsen theory, under the diffuse reflection assumption. Recent experiments reported ballistic molecular transport of gases, which urges for the development of theoretical tools to address the predominant specular reflections on atomically smooth surfaces. Here we develop a generalized Knudsen theory, which is applicable to various boundary conditions covering from the extreme specular reflection to the complete diffuse reflection. Our model overcomes the limitation of Smoluchowski model, which predicts the gas flow rate diverging to infinity for specular reflection. It emphasizes that the specular reflection can reduce the dissipation flow rate. Our model is validated using molecular dynamics simulations in various scenarios. The proposed model provides insights into the gas transport under confinement and extends Knudsen theory to free molecular flow with specular reflections.

2.
Nat Commun ; 14(1): 2161, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061522

RESUMO

Engineering different two-dimensional materials into heterostructured membranes with unique physiochemical properties and molecular sieving channels offers an effective way to design membranes for fast and selective gas molecule transport. Here we develop a simple and versatile pyro-layering approach to fabricate heterostructured membranes from boron nitride nanosheets as the main scaffold and graphene nanosheets derived from a chitosan precursor as the filler. The rearrangement of the graphene nanosheets adjoining the boron nitride nanosheets during the pyro-layering treatment forms precise in-plane slit-like nanochannels and a plane-to-plane spacing of ~3.0 Å, thereby endowing specific gas transport pathways for selective hydrogen transport. The heterostructured membrane shows a high H2 permeability of 849 Barrer, with a H2/CO2 selectivity of 290. This facile and scalable technique holds great promise for the fabrication of heterostructures as next-generation membranes for enhancing the efficiency of gas separation and purification processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA