Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Physiol ; 195(3): 1925-1940, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38427921

RESUMO

Leaf senescence is a vital aspect of plant physiology and stress responses and is induced by endogenous factors and environmental cues. The plant-specific NAC (NAM, ATAF1/2, CUC2) transcription factor family influences growth, development, and stress responses in Arabidopsis (Arabidopsis thaliana) and other species. However, the roles of NACs in tobacco (Nicotiana tabacum) leaf senescence are still unclear. Here, we report that NtNAC56 regulates leaf senescence in tobacco. Transgenic plants overexpressing NtNAC56 (NtNAC56-OE) showed induction of senescence-related genes and exhibited early senescence and lower chlorophyll content compared to wild-type (WT) plants and the Ntnac56-19 mutant. In addition, root development and seed germination were inhibited in the NtNAC56-OE lines. Transmission electron microscopy observations accompanied by physiological and biochemical assays revealed that NtNAC56 overexpression triggers chloroplast degradation and reactive oxygen species accumulation in tobacco leaves. Transcriptome analysis demonstrated that NtNAC56 activates leaf senescence-related genes and jasmonic acid (JA) biosynthesis pathway genes. In addition, the JA content of NtNAC56-OE plants was higher than in WT plants, and JA treatment induced NtNAC56 expression. We performed DNA affinity purification sequencing to identify direct targets of NtNAC56, among which we focused on LIPOXYGENASE 5 (NtLOX5), a key gene in JA biosynthesis. A dual-luciferase reporter assay and a yeast one-hybrid assay confirmed that NtNAC56 directly binds to the TTTCTT motif in the NtLOX5 promoter. Our results reveal a mechanism whereby NtNAC56 regulates JA-induced leaf senescence in tobacco and provide a strategy for genetically manipulating leaf senescence and plant growth.


Assuntos
Ciclopentanos , Regulação da Expressão Gênica de Plantas , Nicotiana , Oxilipinas , Folhas de Planta , Proteínas de Plantas , Senescência Vegetal , Plantas Geneticamente Modificadas , Fatores de Transcrição , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Senescência Vegetal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Regiões Promotoras Genéticas/genética
2.
Plant Biotechnol J ; 22(7): 1897-1912, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386569

RESUMO

Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Oryza/genética , Oryza/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento
3.
Plant J ; 111(4): 1123-1138, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763512

RESUMO

Brassica napus is an important oil crop and an allotetraploid species. However, the detailed analysis of gene function and homoeologous gene expression in all tissues at different developmental stages was not explored. In this study, we performed a global transcriptome analysis of 24 vegetative and reproductive tissues at six developmental stages (totally 111 tissues). These samples were clustered into eight groups. The gene functions of silique pericarp were similar to roots, stems and leaves. In particular, glucosinolate metabolic process was associated with root and silique pericarp. Genes involved in protein phosphorylation were often associated with stamen, anther and the early developmental stage of seeds. Transcription factor (TF) genes were more specific than structural genes. A total of 17 100 genes that were preferentially expressed in one tissue (tissue-preferred genes, TPGs), including 889 TFs (5.2%), were identified in the 24 tissues. Some TPGs were identified as hub genes in the co-expression network analysis, and some TPGs in different tissues were involved in different hormone pathways. About 67.0% of the homoeologs showed balanced expression, whereas biased expression of homoeologs was associated with structural divergence. In addition, the spatiotemporal expression of homoeologs was related to the presence of transposable elements (TEs) and regulatory elements (REs); more TEs and fewer REs in the promoters resulted in divergent expression in different tissues. This study provides a valuable transcriptional map for understanding the growth and development of B. napus, for identifying important genes for future crop improvement, and for exploring gene expression patterns in the B. napus.


Assuntos
Brassica napus , Brassica napus/genética , Brassica napus/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta , Sementes/genética , Transcriptoma
4.
J Exp Bot ; 72(10): 3597-3610, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33712842

RESUMO

Petal size determines the value of ornamental plants, and thus their economic value. However, the molecular mechanisms controlling petal size remain unclear in most non-model species. To identify quantitative trait loci and candidate genes controlling petal size in rapeseed (Brassica napus), we performed a genome-wide association study (GWAS) using data from 588 accessions over three consecutive years. We detected 16 significant single nucleotide polymorphisms (SNPs) associated with petal size, with the most significant SNPs located on chromosomes A05 and C06. A combination of GWAS and transcriptomic sequencing based on two accessions with contrasting differences in petal size identified 52 differentially expressed genes (DEGs) that may control petal size variation in rapeseed. In particular, the rapeseed gene BnaA05.RAP2.2, homologous to Arabidopsis RAP2.2, may be critical to the negative control of petal size through the ethylene signaling pathway. In addition, a comparison of petal epidermal cells indicated that petal size differences between the two contrasting accessions were determined mainly by differences in cell number. Finally, we propose a model for the control of petal size in rapeseed through ethylene and cytokinin signaling pathways. Our results provide insights into the genetic mechanisms regulating petal size in flowering plants.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica rapa/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Transcriptoma
5.
Int J Mol Sci ; 18(12)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29261107

RESUMO

Galactinol synthase (GolS) is a key enzyme in raffinose family oligosaccharide (RFO) biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS family in rapeseed (Brassica napus) and tobacco (Nicotiana tabacum) remain unclear. In this study, we identified 20 BnGolS and 9 NtGolS genes. Subcellular localization predictions showed that most of the proteins are localized to the cytoplasm. Phylogenetic analysis identified a lost event of an ancient GolS copy in the Solanaceae and an ancient duplication event leading to evolution of GolS4/7 in the Brassicaceae. The three-dimensional structures of two GolS proteins were conserved, with an important DxD motif for binding to UDP-galactose (uridine diphosphate-galactose) and inositol. Expression profile analysis indicated that BnGolS and NtGolS genes were expressed in most tissues and highly expressed in one or two specific tissues. Hormone treatments strongly induced the expression of most BnGolS genes and homologous genes in the same subfamilies exhibited divergent-induced expression. Our study provides a comprehensive evolutionary analysis of GolS genes among the Brassicaceae and Solanaceae as well as an insight into the biological function of GolS genes in hormone response in plants.


Assuntos
Brassica rapa/genética , Evolução Molecular , Galactosiltransferases/genética , Genoma de Planta , Nicotiana/genética , Proteínas de Plantas/genética , Brassica rapa/classificação , Brassica rapa/enzimologia , Sequência Conservada , Galactosiltransferases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Nicotiana/classificação , Nicotiana/enzimologia
6.
Plant Physiol Biochem ; 213: 108854, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901228

RESUMO

The transcription factors Related to ABI3/VP1 (RAV) are crucial for various plant processes and stress responses. Although the U's triangle Brassica species genomes have been released, the knowledge regarding the RAV family is still limited. In this study, we identified 123 putative RAV genes across the six U's triangle Brassica species (Brassica rapa, 14; Brassica oleracea, 14; Brassica nigra, 13; Brassica carinata, 27; Brassica juncea, 28; Brassica napus, 27). Phylogenetic analysis categorized them into three groups. The RAV genes exhibited diversity in both functional and structural aspects, particularly in gene structure and cis-acting elements within their promoters. The expression analysis revealed that BnaRAV genes in Group 1/2 exhibited diverse expression patterns across various tissues, while those in Group 3 did not show expression except for BnaRAV3L-2 and BnaRAV3L-6, which were exclusively expressed in seeds. Furthermore, the seed-specific expression of BnaA06. RAV3L (BnaRAV3L-2) was confirmed through promoter-GUS staining. Subcellular localization studies demonstrated that BnaA06.RAV3L is localized to the nucleus. The overexpression of BnaA06. RAV3L in Arabidopsis led to a remarkable inhibition of seed-specific traits such as seed width, seed length, seed area, and seed weight. This study provides insights into the functional evolution of the RAV gene family in U triangle Brassica species. It establishes a foundation for uncovering the molecular mechanisms underlying the negative role of RAV3L in seed development.


Assuntos
Brassica , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Sementes , Fatores de Transcrição , Brassica/genética , Brassica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismo
7.
Biotechnol Biofuels Bioprod ; 16(1): 20, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750865

RESUMO

BACKGROUND: The pod shattering (PS) trait negatively affects the crop yield in rapeseed especially under dry conditions. To better understand the trait and cultivate higher resistance varieties, it's necessary to identify key genes and unravel the PS mechanism thoroughly. RESULTS: In this study, we conducted a comparative transcriptome analysis between two materials significantly different in silique shatter resistance lignin deposition and polygalacturonase (PG) activity. Here, we identified 10,973 differentially expressed genes at six pod developmental stages. We found that the late pod development stages might be crucial in preparing the pods for upcoming shattering events. GO enrichment results from K-means clustering and weighed gene correlation network analysis (WGCNA) both revealed senescence-associated genes play an important role in PS. Two hub genes Bna.A05ABI5 and Bna.C03ERF/AP2-3 were selected from the MEyellow module, which possibly regulate the PS through senescence-related mechanisms. Further investigation found that senescence-associated transcription factor Bna.A05ABI5 upregulated the expression of SAG2 and ERF/AP2 to control the shattering process. In addition, the upregulation of Bna.C03ERF/AP2-3 is possibly involved in the transcription of downstream SHP1/2 and LEA proteins to trigger the shattering mechanism. We also analyzed the PS marker genes and found Bna.C07SHP1/2 and Bna.PG1/2 were significantly upregulated in susceptible accession. Furthermore, the role of auxin transport by Bna.WAG2 was also observed, which could reduce the PG activity to enhance the PS resistance through the cell wall loosening process. CONCLUSION: Based on comparative transcriptome evaluation, this study delivers insights into the regulatory mechanism primarily underlying the variation of PS in rapeseed. Taken together, these results provide a better understanding to increase the yield of rapeseed by reducing the PS through better engineered crops.

8.
Biotechnol Biofuels ; 13: 90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32467731

RESUMO

BACKGROUND: Brassica rapa is an important oilseed and vegetable crop species and is the A subgenome donor of two important oilseed Brassica crops, Brassica napus and Brassica juncea. Although seed size (SZ), seed color (SC), and oil content (OC) substantially affect seed yield and quality, the mechanisms regulating these traits in Brassica crops remain unclear. RESULTS: We collected seeds from a pair of B. rapa accessions with significantly different SZ, SC, and OC at seven seed developmental stages (every 7 days from 7 to 49 days after pollination), and identified 28,954 differentially expressed genes (DEGs) from seven pairwise comparisons between accessions at each developmental stage. K-means clustering identified a group of cell cycle-related genes closely connected to variation in SZ of B. rapa. A weighted correlation analysis using the WGCNA package in R revealed two important co-expression modules comprising genes whose expression was positively correlated with SZ increase and negatively correlated with seed yellowness, respectively. Upregulated expression of cell cycle-related genes in one module was important for the G2/M cell cycle transition, and the transcription factor Bra.A05TSO1 seemed to positively stimulate the expression of two CYCB1;2 genes to promote seed development. In the second module, a conserved complex regulated by the transcription factor TT8 appear to determine SC through downregulation of TT8 and its target genes TT3, TT18, and ANR. In the third module, WRI1 and FUS3 were conserved to increase the seed OC, and Bra.A03GRF5 was revealed as a key transcription factor on lipid biosynthesis. Further, upregulation of genes involved in triacylglycerol biosynthesis and storage in the seed oil body may increase OC. We further validated the accuracy of the transcriptome data by quantitative real-time PCR of 15 DEGs. Finally, we used our results to construct detailed models to clarify the regulatory mechanisms underlying variations in SZ, SC, and OC in B. rapa. CONCLUSIONS: This study provides insight into the regulatory mechanisms underlying the variations of SZ, SC, and OC in plants based on transcriptome comparison. The findings hold great promise for improving seed yield, quality and OC through genetic engineering of critical genes in future molecular breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA