Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(14): 10814-10823, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517064

RESUMO

Active control of the surface-enhanced Raman scattering (SERS) enhancement shows great potential for realizing smart detection of different molecules. However, conventional methods usually involve time-consuming structural design or a sophisticated fabrication process. Herein, we reported an electrically tunable field effect transistor (FET) comprising a WOx/MoOx hybrid as the SERS active layer. In the experiment, WOx/MoOx hybrids were first prepared by mixing different molar ratios of WOx and MoOx oxides. Then, R6G molecules were used as Raman reporters, showing that the intensity of the SERS signal observed on the most optimal hybrids (molar ratio = 1 : 3) could be increased by two times as high as that observed on a single WOx or MoOx based substrate, which was ascribed to enhanced charge transfer efficiency by the constructed nano-heterojunction between the WOx and MoOx oxides. Thereafter, a back-gate FET was fabricated on a SiO2/Si substrate, and the most optimal WOx/MoOx hybrid was deposited as the gate channel and the SERS active layer. After that, a series of gate biases (from -15 V to 15 V) were implemented to actively tune the SERS performance of the FET. It is evident that the SERS EF can be further tuned from 2.39 × 107 (-15 V) to 6.55 × 107 (+10 V), which is ∼7.4/4.1 times higher than that observed on the pure WOx device (8.81 × 106) or pure MoOx (1.61 × 107) device, respectively. Finally, the mechanism behind the electrical tuning strategy was investigated. It is revealed that a positive voltage would bend the conduction band down, which increased the electron density near the Fermi level. Consequently, it triggered the resonance charge transfer and significantly improved the SERS performance. In contrast, a negative gate voltage attracted the holes to the Fermi level, which deferred the charge transfer process, and caused the reduction of the SERS enhancement.

2.
Org Lett ; 16(23): 6172-5, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25397731

RESUMO

It was found for the first time that organic alkali metal compounds serve as highly efficient precatalysts for the hydrophosphonylation reactions of aldehydes and unactivated ketones with dialkyl phosphite under mild conditions. For ketone substrates, a reversible reaction was observed, and the influence of catalyst loading and reaction temperature on the reaction equilibrium was studied in detail. Overall, the hydrophosphonylation reactions catalyzed by 0.1 mol % n-BuLi were completed within 5 min for a broad range of substrates and generated a series of α-hydroxy phosphonates in high yields.


Assuntos
Aldeídos/química , Cetonas/química , Compostos Organometálicos/química , Catálise , Estrutura Molecular , Organofosfonatos , Fosfitos
3.
Org Lett ; 16(17): 4516-9, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25148072

RESUMO

Four novel heterobimetallic complexes [REL2]{[(THF)3Li]2(µ-Cl)} stabilized by chiral phenoxy-functionalized prolinolate (RE = Yb (1), Y (2), Sm (3), Nd (4), H2L = (S)-2,4-di-tert-butyl-6-[[2-(hydroxydiphenylmethyl)pyrrolidin-1-yl]methyl]phenol have been synthesized and characterized. These readily available complexes are highly active in catalyzing the epoxidation of α,ß-unsaturated ketones, while the enantioselectivity varies according to the ionic radii of the rare earth center. A series of chalcone derivatives were converted to chiral epoxides in 80 → 99% ee at 0 °C using TBHP as the oxidant in the presence of 10 mol % of 1.


Assuntos
Complexos de Coordenação/síntese química , Cetonas/química , Lítio/química , Prolina/análogos & derivados , Prolina/química , Itérbio/química , Catálise , Complexos de Coordenação/química , Compostos de Epóxi/química , Ligantes , Metais Terras Raras , Estrutura Molecular
4.
Dalton Trans ; 43(22): 8355-62, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24728525

RESUMO

Lanthanide anilido complexes stabilized by the 2,6-diisopropylanilido ligand have been synthesized and characterized, and their catalytic activity for hydrophosphonylation reaction was explored. A reaction of anhydrous LnCl3 with 5 equivalents of LiNHPh-(I)Pr2-2,6 in THF generated the heterobimetallic lanthanide-lithium anilido complexes (2,6-(I)Pr2PhNH)5LnLi2(THF)2 [Ln = Sm(1), Nd(2), Y(3)] in good isolated yields. These complexes are well characterized by elemental analysis, IR, NMR (for complex ) and single-crystal structure determination. Complexes 1 - 3 are isostructural. In these complexes, the lanthanide metal ion is five-coordinated by five nitrogen atoms from five 2,6-diisopropylanilido ligands to form a distorted trigonal bipyramidal geometry. The lithium ion is coordinated by two nitrogen atoms from two 2,6-diisopropylanilido ligands, and one oxygen atom from a THF molecule. It was found that these simple lanthanide anilido complexes are highly efficient for catalyzing hydrophosphonylation reactions of various aldehydes and unactivated ketones to generate α-hydroxyphosphonates in good to excellent yields (up to 99%) within a short time (5 min for aldehydes, 20 min for ketones). Furthermore, the mechanism of hydrophosphonylation reactions has also been elucidated via(1)H NMR monitoring of reaction.


Assuntos
Aldeídos/química , Anilidas/química , Complexos de Coordenação/síntese química , Cetonas/química , Lantânio/química , Organofosfonatos/química , Catálise , Complexos de Coordenação/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA