Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(6): 1793-1814, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461478

RESUMO

Flavan-3-ols are prominent phenolic compounds found abundantly in the young leaves of tea plants. The enzymes involved in flavan-3-ol biosynthesis in tea plants have been extensively investigated. However, the localization and associations of these numerous functional enzymes within cells have been largely neglected. In this study, we aimed to investigate the synthesis of flavan-3-ols in tea plants, particularly focusing on epigallocatechin gallate. Our analysis involving the DESI-MSI method to reveal a distinct distribution pattern of B-ring trihydroxylated flavonoids, primarily concentrated in the outer layer of buds. Subcellular localization showed that CsC4H, CsF3'H, and CsF3'5'H localizes endoplasmic reticulum. Protein-protein interaction studies demonstrated direct associations between CsC4H, CsF3'H, and cytoplasmic enzymes (CHS, CHI, F3H, DFR, FLS, and ANR), highlighting their interactions within the biosynthetic pathway. Notably, CsF3'5'H, the enzyme for B-ring trihydroxylation, did not directly interact with other enzymes. We identified cytochrome b5 isoform C serving as an essential redox partner, ensuring the proper functioning of CsF3'5'H. Our findings suggest the existence of distinct modules governing the synthesis of different B-ring hydroxylation compounds. This study provides valuable insights into the mechanisms underlying flavonoid diversity and efficient synthesis and enhances our understanding of the substantial accumulation of B-ring trihydroxylated flavan-3-ols in tea plants.


Assuntos
Camellia sinensis , Catequina , Citocromos b5 , Flavonoides , Proteínas de Plantas , Flavonoides/metabolismo , Flavonoides/biossíntese , Camellia sinensis/metabolismo , Camellia sinensis/genética , Catequina/metabolismo , Catequina/análogos & derivados , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citocromos b5/metabolismo , Citocromos b5/genética , Folhas de Planta/metabolismo , Hidroxilação , Retículo Endoplasmático/metabolismo
2.
BMC Cancer ; 24(1): 620, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773564

RESUMO

BACKGROUND: The role of adjuvant transcatheter arterial chemoembolization (TACE) following repeated resection/ablation for recurrent hepatocellular carcinoma (HCC) remains uncertain. The aim of this study was to assess the effectiveness of adjuvant TACE following repeated resection or ablation in patients with early recurrent HCC. METHODS: Information for patients who underwent repeated surgery or radiofrequency ablation (RFA) for early recurrent HCCs (< 2 years) at our institution from January 2017 to December 2020 were collected. Patients were divided into adjuvant TACE and observation groups according to whether they received adjuvant TACE or not. The recurrence-free survival (RFS) and overall survival (OS) were compared between the two groups before and after propensity score matching (PSM). RESULTS: Of the 225 patients enrolled, the median time of HCC recurrence was 11 months (IQR, 6-16 months). After repeated surgery or radiofrequency ablation (RFA) for recurrent tumors, 45 patients (20%) received adjuvant TACE while the remaining 180 (80%) didn't. There were no significant differences in RFS (P = 0.325) and OS (P = 0.072) between adjuvant TACE and observation groups before PSM. There were also no significant differences in RFS (P = 0.897) and OS (P = 0.090) between the two groups after PSM. Multivariable analysis suggested that multiple tumors, liver cirrhosis, and RFA were independent risk factors for the re-recurrence of HCC. CONCLUSION: Adjuvant TACE after repeated resection or ablation for early recurrent HCCs was not associated with a long-term survival benefit in this single-center cohort.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Hepatectomia , Neoplasias Hepáticas , Recidiva Local de Neoplasia , Pontuação de Propensão , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Quimioembolização Terapêutica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Hepatectomia/métodos , Idoso , Ablação por Radiofrequência/métodos , Estudos Retrospectivos , Terapia Combinada , Resultado do Tratamento , Quimioterapia Adjuvante/métodos
3.
Inorg Chem ; 63(4): 2138-2147, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38237037

RESUMO

Expediting the torpid kinetics of the oxygen reduction reaction (ORR) at the cathode with minimal amounts of Pt under acidic conditions plays a significant role in the development of proton exchange membrane fuel cells (PEMFCs). Herein, a novel Pt-N-C system consisting of Pt single atoms and nanoparticles anchored onto the defective carbon nanofibers is proposed as a highly active ORR catalyst (denoted as Pt-N-C). Detailed characterizations together with theoretical simulations illustrate that the strong coupling effect between different Pt sites can enrich the electron density of Pt sites, modify the d-band electronic environments, and optimize the oxygen intermediate adsorption energies, ultimately leading to significantly enhanced ORR performance. Specifically, the as-designed Pt-N-C demonstrates exceptional ORR properties with a high half-wave potential of 0.84 V. Moreover, the mass activity of Pt-N-C reaches 193.8 mA gPt-1 at 0.9 V versus RHE, which is 8-fold greater than that of Pt/C, highlighting the enormously improved electrochemical properties. More impressively, when integrated into a membrane electrode assembly as cathode in an air-fed PEMFC, Pt-N-C achieved a higher maximum power density (655.1 mW cm-2) as compared to Pt/C-based batteries (376.25 mW cm-2), hinting at the practical application of Pt-N-C in PEMFCs.

4.
Inorg Chem ; 63(21): 10092-10098, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38748447

RESUMO

Exploring efficient alkaline hydrogen oxidation reaction (HOR) electrocatalysts is of great concern for constructing anion exchange membrane fuel cells (AEMFCs). Herein, d-band center modulated PdCo alloys with ultralow Pd content anchored onto the defective carbon support (abbreviated as PdCo/NC hereafter) are proposed as highly efficient HOR catalyst. The as-prepared catalyst exhibits exceptional HOR performance compared to the Pt/C catalyst, achieving thermodynamically spontaneous and kinetically preferential reactions. Specifically, the resultant PdCo/NC demonstrates a marked enhancement in alkaline HOR performance, with the highest mass and specific activities of 1919.6 mA mgPd-1 and 1.9 mA cm-2, 51.1 and 4.2 times higher than those of benchmark of Pt/C, along with an excellent stability in a chronoamperometry test. In the analysis of in situ Raman spectra, it was discovered that tetrahedrally coordinated H-bonded water molecules were formed during the HOR process. This indicates that the promotion of interfacial water molecule formation and enhancement of HOR activities in PdCo/NC are facilitated by defect engineering and the turning of d-band center in PdCo alloy. The essential knowledge obtained in this study could open up a new direction for modifying the electronic structure of cost-effective HOR catalysts through electronic structure engineering.

5.
Inorg Chem ; 63(26): 12146-12155, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946339

RESUMO

The electrochemical conversion of nitrate pollutants into value-added ammonia (NH3) is an appealing alternative synthetic route for sustainable NH3 production. However, the development of the electrocatalytic nitrate-to-ammonia reduction reaction (NO3RR) has been hampered by unruly reactants and products at the interface and the accompanied sluggish kinetic rate. In this work, a built-in positive valence space is successfully constructed over FeCu nanocrystals to rationally regulate interfacial component concentrations and positively shift the chemical equilibrium. With positive valence Cu optimizing the active surface, the space between the stern and shear layers becomes positive, which is able to continuously attract the negatively charged NO3- reactant and repulse the positively charged NH4+ product even under high current density, thus significantly boosting the NO3RR kinetics. The system with a built-in positive valence space affords an ampere-level NO3RR performance with the highest NH3 yield rate of 150.27 mg h-1 mg-1 at -1.3 V versus RHE with an outstanding NH3 current density of 189.53 mA cm-2, as well as a superior Faradaic efficiency (FE) of 97.26% at -1.2 V versus RHE. The strategy proposed here underscores the importance of interfacial concentration regulation and can find wider applicability in other electrochemical syntheses suffering from sluggish kinetics.

6.
Inorg Chem ; 63(12): 5727-5733, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38470094

RESUMO

Nickel-rich layered oxides are envisaged as one of the most promising alternative cathode materials for lithium-ion batteries, considering their capabilities to achieve ultrahigh energy density at an affordable cost. Nonetheless, with increasing Ni content in the cathodes comes a severe extent of Ni4+ redox side reactions on the interface, leading to fast capacity decay and structural stability fading over extended cycles. Herein, dual additives of bis(vinylsulfonyl)methane (BVM) and lithium difluorophosphate (LiDFP) are adopted to synergistically generate the F-, P-, and S-rich passivation layer on the cathode, and the Ni4+ activity and dissolution at high voltage are restricted. The sulfur-rich layer formed by the polymerization of BVM, combined with the Li3PO4 and LiF phases derived from LiDFP, alleviates the problems of increased impedance, cracks, and an irreversible H2-H3 phase transition. Consequently, the Ni-rich LiNixM1-xO2 (x > 0.95) button half-cell cycled in LiDFP + BVM electrolyte exhibits a significant discharging capacity of 181.4 mAh g-1 at 1 C (1 C = 200 mA g-1) with retention of 83.7% after 100 cycles, surpassing the performance of the commercial electrolyte (160.7 mAh g-1) with retention of 53.3%. Remarkably, the NCM95||graphite pouch cell exhibits a remarkable capacity retention of 95.5% after 200 cycles. This work inspires the rational design of electrolyte additives for ultrahigh-energy batteries with nickel-rich layered oxide cathodes.

7.
Neurosurg Rev ; 47(1): 198, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722430

RESUMO

Achieving a pear-shaped balloon holds pivotal significance in the context of successful percutaneous microcompression procedures for trigeminal neuralgia. However, inflated balloons may assume various configurations, whether it is inserted into Meckel's cave or not. The absence of an objective evaluation metric has become apparent. To investigate the relationship between the morphology of Meckel's Cave and the balloon used in percutaneous microcompression for trigeminal neuralgia and establish objective criteria for assessing balloon shape in percutaneous microcompression procedures. This retrospective study included 58 consecutive patients with primary trigeminal neuralgia. Data included demographic, clinical outcomes, and morphological features of Meckel's cave and the balloon obtained from MRI and Dyna-CT imaging. MRI of Meckel's cave and Dyna-CT of intraoperative balloon were modeled, and the morphological characteristics and correlation were analyzed. The reconstructed balloon presented a fuller morphology expanding outward and upward on the basis of Meckel's cave. The projected area of balloon was strongly positively correlated with the projected area of Meckel's cave. The Pearson correlation coefficients were 0.812 (P<0.001) for axial view, 0.898 (P<0.001) for sagittal view and 0.813 (P<0.001) for coronal view. Similarity analysis showed that the sagittal projection image of Meckel's cave and that of the balloon had good similarity. This study reveals that the balloon in percutaneous microcompression essentially represents an expanded morphology of Meckel's cave, extending outward and upward. There is a strong positive correlation between the volume and projected area of the balloon and that of Meckel's cave. Notably, the sagittal projection image of Meckel's cave serves as a reliable predictor of the intraoperative balloon shape. This method has a certain generalizability and can help providing objective criteria for judging balloon shape during percutaneous microcompression procedures.


Assuntos
Imageamento por Ressonância Magnética , Neuralgia do Trigêmeo , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Neuralgia do Trigêmeo/cirurgia , Neuralgia do Trigêmeo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Tomografia Computadorizada por Raios X/métodos , Procedimentos Neurocirúrgicos/métodos , Resultado do Tratamento , Idoso de 80 Anos ou mais
8.
Acta Neurochir (Wien) ; 166(1): 51, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289483

RESUMO

BACKGROUND: Percutaneous balloon compression (PBC) of the Gasserian ganglion is steadily gaining traction within the trigeminal neuralgia (TN) community. Bilateral trigeminal neuralgia (BTN) is a rare condition, and its treatment remains challenging. As far as we know, there are currently no research reports on the treatment outcomes of PBC for BTN.The purpose of this study is to meticulously evaluate the efficacy and safety of PBC for BTN in our medical institution. METHODS: In this retrospective study, we collected and analyzed the medical records of all patients with BTN who underwent the PBC procedure at the Department of Neurosurgery at Hebei General Hospital from July 2017 to July 2023. After undergoing PBC therapy, all patients were promptly assessed for treatment efficacy based on the modified Barrow Neurological Institute (BNI) pain intensity grading scale. RESULTS: All 37 patients with BTN experienced significant pain relief (BNI I-IIIb) immediately following unilateral PBC treatment. Among these patients, 25 reported relief from pain on the non-operative side, which was effectively managed with medication. Out of the 12 patients who did not experience improvement in contralateral symptoms, 11 received contralateral PBC. Out of the 48 treated sides, 47 sides (97.9%) achieved excellent pain control following a single PBC procedure. The follow-up times ranged from 2 to 62 months. At the 1-year follow-up, 94.6% of the patients maintained excellent therapeutic outcomes.Three recurrent patients underwent repeated unilateral PBC, and all of them maintained excellent pain control postoperatively. At the last follow-up, satisfaction was at 91.7% (measured using the Likert scale), with no severe complications occurring. CONCLUSIONS: The results indicate that PBC is an effective and relatively safe method for treating BTN, offering a valuable option for pain control in these rare cases of TN.


Assuntos
Oclusão com Balão , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/cirurgia , Estudos Retrospectivos , Dor , Manejo da Dor
9.
Nano Lett ; 23(22): 10148-10156, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37922398

RESUMO

Dendrite growth and corrosion of Zn metal anodes result in the limited reversibility of aqueous Zn metal batteries (ZMBs), hindering their prospects as large-scale energy storage devices. Inspired by the similarity of conventional electroplating industrial engineering and Zn deposition in ZMBs, we tend to utilize a low-cost leveling agent (LEA), 1,4-butynediol, to level the Zn deposition. Combining theoretical with in situ experimental characterizations, the preferential adsorption of LEA molecules on different lattice planes can contribute to crystallographic orientation manipulation of the (002) plane, causing good inhibition of dendrite growth. Additionally, the adsorption of LEA molecules on the Zn surface can also prevent undesirable corrosion. Endowed with these merits, symmetric cells and full cells with the LEA additive achieve improved stability and reversibility. This work provides new inspiration for introducing traditional electroplating additives into high-performance ZMBs and gives researchers a direction for choosing electrolyte additives, which also has potential to be applied to other metal anodes.

10.
Nano Lett ; 23(8): 3181-3188, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37036714

RESUMO

Sluggish desolvation in extremely cold environments caused by strong Li+-dipole interactions is a key inducement for the capacity decline of a battery. Although the Li+-dipole interaction is reduced by increasing the electrolyte concentration, its high viscosity inevitably limits ion transfer at low temperatures. Herein, Li+-dipole interactions were eliminated to accelerate the migration rate of ions in electrolytes and at the electrode interface via designing Li+-anion nanometric aggregates (LA-nAGGs) in low-concentration electrolytes. Li+ coordinated by TFSI- and FSI- anions instead of a donor solvent promotes the formation of an inorganic-rich interfacial layer and facilitates Li+ transfer. Consequently, the LA-nAGG-type electrolyte demonstrated a high ionic conductivity (0.6 mS cm-1) at -70 °C and a low activation energy of charge transfer (38.24 kJ mol-1), enabling Li||NiFe-Prussian blue derivative cells to deliver ∼83.1% of their room-temperature capacity at -60 °C. This work provides an advanced strategy for the development of low-temperature electrolytes.

11.
Nano Lett ; 23(4): 1135-1143, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779620

RESUMO

Aqueous Zn metal batteries have attracted extensive attention due to their intrinsic advantages. However, zinc ions tend to deposit irregularly, seriously depleting the capacity and stability of the battery. The construction of zincophilic sites can effectively regulate the nucleation and growth of Zn, but there is a defect that these sites will be covered with gradual failure after long-term cycling. Here, in combination with the sustained-compensated strategy, interfacial zincophilic sites are continuously constructed, thus effectively avoiding the threat of dendrites and improving the electrochemical performance. Impressively, at 10 mA cm-2 and 5 mAh cm-2, the protected Zn metal exhibits excellent cycling stability over 2000 cycles in the Zn//Zn battery. Moreover, even the cathode mass loading is considerably high (35 mg cm-2), and the Zn//NVO full cell significantly outperforms with high areal capacity (up to 4 mAh cm-2). This novel strategy provides a direction for the development of high-capacity aqueous batteries.

12.
Angew Chem Int Ed Engl ; 63(2): e202311413, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38009687

RESUMO

With its efficient nitrogen fixation kinetics, electrochemical lithium-mediated nitrogen reduction reaction (LMNRR) holds promise for replacing Haber-Bosch process and realizing sustainable and green ammonia production. However, the general interface problem in lithium electrochemistry seriously impedes the further enhancement of LMNRR performance. Inspired by the development history of lithium battery electrolytes, here, we extend the ring-chain solvents coupling law to LMNRR system to rationally optimize the interface during the reaction process, achieving nearly a two-fold Faradaic efficiency up to 54.78±1.60 %. Systematic theoretical simulations and experimental analysis jointly decipher that the anion-rich Li+ solvation structure derived from ring tetrahydrofuran coupling with chain ether successfully suppresses the excessive passivation of electrolyte decomposition at the reaction interface, thus promoting the mass transfer of active species and enhancing the nitrogen fixation kinetics. This work offers a progressive insight into the electrolyte design of LMNRR system.

13.
Angew Chem Int Ed Engl ; 63(20): e202320258, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38456300

RESUMO

Large-scale energy storage devices play pivotal roles in effectively harvesting and utilizing green renewable energies (such as solar and wind energy) with capricious nature. Biphasic self-stratifying batteries (BSBs) have emerged as a promising alternative for grid energy storage owing to their membraneless architecture and innovative battery design philosophy, which holds promise for enhancing the overall performance of the energy storage system and reducing operation and maintenance costs. This minireview aims to provide a timely review of such emerging energy storage technology, including its fundamental design principles, existing categories, and prototype architectures. The challenges and opportunities of this undergoing research topic will also be systematically highlighted and discussed to provide guidance for the subsequent R&D of superior BSBs while conducive to bridging the gap for their future practical application.

14.
Angew Chem Int Ed Engl ; 63(18): e202319029, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38449084

RESUMO

Electrochemical reduction of nitrate to ammonia (NO3RR) is a promising and eco-friendly strategy for ammonia production. However, the sluggish kinetics of the eight-electron transfer process and poor mechanistic understanding strongly impedes its application. To unveil the internal laws, herein, a library of Pd-based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure-activity relationship towards NO3RR. The ultra-thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants break the electronic balance and upshift its d-band center, thus optimizing intermediates adsorption. The anisotropic electronic characteristics of these transition metals make the NO3RR activity in the order of PdCu>PdCo≈PdFe>PdNi>Pd, and a record-high NH3 yield rate of 295 mg h-1 mgcat -1 along with Faradaic efficiency of 90.9 % is achieved in neutral electrolyte on PdCu bimetallene. Detailed studies further reveal that the moderate N-species (*NO3 and *NO2) adsorption ability, enhanced *NO activation, and reduced HER activity facilitate the NH3 production. We believe our results will give a systematic guidance to the future design of NO3RR catalysts.

15.
J Cell Sci ; 134(1)2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33277381

RESUMO

Cell migration involves front-to-rear asymmetric focal adhesion (FA) dynamics, which facilitates trailing edge detachment and directional persistence. Here, we show that kindlin-2 is crucial for FA sliding and disassembly in migrating cells. Loss of kindlin-2 markedly reduced FA number and selectively impaired rear FA sliding and disassembly, resulting in defective rear retraction and reduced directional persistence during cell migration. Kindlin-2-deficient cells failed to develop serum-induced actomyosin-dependent tension at FAs. At the molecular level, kindlin-2 directly interacted with myosin light chain kinase (MYLK, hereafter referred to as MLCK), which was enhanced in response to serum stimulation. Serum deprivation inhibited rear FA disassembly, which was released in response to serum stimulation. Overexpression of the MLCK-binding kindlin-2 F0F1 fragment (amino acid residues 1-167), which inhibits the interaction of endogenous kindlin-2 with MLCK, phenocopied kindlin-2 deficiency-induced migration defects. Inhibition of MLCK, like loss of kindlin-2, also impaired trailing-edge detachment, rear FA disassembly and directional persistence. These results suggest a role of kindlin-2 in promoting actomyosin contractility at FAs, leading to increased rear FA sliding and disassembly, and directional persistence during cell migration.


Assuntos
Adesões Focais , Quinase de Cadeia Leve de Miosina , Adesão Celular , Movimento Celular/genética , Adesões Focais/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Fosforilação
16.
Anal Chem ; 95(4): 2157-2167, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36637876

RESUMO

Microscale gas chromatographs (µGCs) promise in-field analysis of volatile organic compounds (VOCs) in environmental and industrial monitoring, healthcare, and homeland security applications. As a step toward addressing challenges with performance and manufacturability, this study reports a highly integrated monolithic chip implementing a multisensing progressive cellular architecture. This architecture incorporates three µGC cells that are customized for different ranges of analyte volatility; each cell includes a preconcentrator and separation column, two complementary capacitive detectors, and a photoionization detector (PID). An on-chip carrier gas filter scrubs ambient air for the analysis. The monolithic chip, with all 16 components, is 40.3 × 55.7 mm2 in footprint. To accommodate surface adsorptive and low-volatility analytes, the architecture eliminates the commonly used inlet valve, eliminating the need for chemically inactive surfaces in the valves and pumps, allowing the use of standard parts. Representative analysis is demonstrated from a nonpolar 14-analyte mixture, a polar 12-analyte mixture, and a 3-phosphonate ester mixture, covering a wide vapor pressure range (0.005-68.5 kPa) and dielectric constant range (1.8-23.2). The three types of detectors show highly complementary responses. Quantitative analysis is shown in the tens to hundreds ppb range. With 200 mL samples, the projected detection limits reach 0.12-4.7 ppb. Limited tests performed at 80% humidity showed that the analytes with vapor pressures <12 kPa were unaffected. A typical full run takes 28 min and consumes 2.3 kJ energy for the fluidic elements (excluding electronics). By eliminating chip-to-chip fluidic interconnections and requiring just one custom-fabricated element, this work presents a path toward high-performance and highly manufacturable µGCs.

17.
Inorg Chem ; 62(26): 10504-10512, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37338465

RESUMO

Exploring high-performance non-precious metal-based electrocatalysts for the sluggish oxygen evolution reaction (OER) process is fundamentally significant for the development of multifarious renewable energy conversion and storage systems. Oxygen vacancy (Vo) engineering is an effective leverage to boost the intrinsic activity of OER, but the underlying catalytic mechanism remains anfractuous. Herein, we realize the construction of oxygen vacancy-enriched porous NiO/ln2O3 nanofibers (designated as Vo-NiO/ln2O3@NFs hereafter) via a facile fabrication strategy for efficient oxygen evolution electrocatalysis. Theoretical calculations and experimental results uncover that, compared with the no-plasma engraving component, the presence of abundant oxygen vacancies in the Vo-NiO/ln2O3@NFs is conducive to modulating the electronic configuration of the catalyst, altering the adsorption of intermediates to reduce the OER overpotential and promote O* formation, upshifting the d band center of metal centers near the Fermi level (Ef), and also increasing the electrical conductivity and enhancing the OER reaction kinetics simultaneously. In situ Raman spectra proclaim that the oxygen vacancy can render the NiO/ln2O3 more easily reconstructible on the surface during the OER course. Therefore, the as-obtained Vo-NiO/ln2O3@NFs demonstrated distinguished OER activity, with an overpotential of only 230 mV at 10 mA cm-2 and excellent stability in alkaline medium, surmounting the majority of the previously reported representative non-noble metal-based candidates. The fundamental insights gained from this work can pave a new path for the electronic structure modulation of efficient, inexpensive OER catalysts via Vo engineering.

18.
Altern Ther Health Med ; 29(3): 43-47, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36881536

RESUMO

Objective: This study aimed to compare the clinical outcomes of a modified microvascular decompression (MVD) with a traditional MVD in hemifacial spasm. Methods: A tota1 of 120 patients with hemifacial spasm who received a modified MVD (modified MVD group) and 115 patients who received a traditional MVD (traditional MVD group) from January 2013 to March 2021 were retrospectively reviewed. The surgery efficiency rate, surgery time and postoperative complications in both groups were recorded and analyzed. Results: There was no significant difference between the 2 groups regarding surgery: efficiency rate (modified MVD group VS traditional MVD group: 92.50% vs 92.17%, respectively; P = .925). The intracranial surgery time and postoperative complications rate in the modified MVD group were significantly lower than in the traditional MVD group (31.00 ± 1.78 min vs 48.00 ± 1.74 min, respectively; P < .05; 8.33% vs 20.87%; P = .006, respectively). There was no statistical difference between open skull time and close skull time between the 2 groups (modified MVD group vs traditional MVD group: 38.50 ± 1.76 min vs 40.00 ± 1.78 min, respectively; P = .055; 38.50 ± 1.76 min vs 36.00 ± 1.78 min, respectively; P = .086). Conclusion: The modified MVD for hemifacial spasm can achieve satisfactory clinical outcomes and reduce intracranial surgery time and postoperative complications.


Assuntos
Espasmo Hemifacial , Cirurgia de Descompressão Microvascular , Humanos , Espasmo Hemifacial/cirurgia , Espasmo Hemifacial/complicações , Resultado do Tratamento , Estudos Retrospectivos , Cirurgia de Descompressão Microvascular/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/cirurgia , Vazamento de Líquido Cefalorraquidiano/complicações , Vazamento de Líquido Cefalorraquidiano/cirurgia
19.
Altern Ther Health Med ; 29(8): 352-355, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632961

RESUMO

Objective: To explore the diagnostic value of blink reflex combined with trigeminal somatosensory evoked potential (TSEP) in trigeminal neuralgia. Methods: A total of 147 patients with trigeminal neuralgia were enrolled as the research objects between February 2022 and February 2023. After admission, all underwent blink reflex on affected/healthy sides and TSEP examinations. The diagnostic value of the blink reflex combined with TSEP was analyzed. Results: The latency of R1, R2, and R2' waves (refers to the different nerve signal waveforms that are recorded when a facial nerve conduction speed test is performed) on the affected side was significantly longer than that on the healthy side (t = 26.324, 18.391, 20.801,Ps < .001), and latency of W1, W2 and W3 waves was also significantly longer than that on the healthy side (t = 16.045, 10.814, 10.349, P < .001). The results of Pearson correlation analysis showed that the latency of R1, W1, W2, and W3 waves was positively correlated with the VAS score (r = 0.539, 0.611, 0.577, 0.586, P < .001). The results of receiver operating characteristic (ROC) curves analysis showed that area under the curve (AUC) values of R1, R2, R2', W1, W2, and W3 waves latency on the affected side in the diagnosis of trigeminal neuralgia were 0.753, 0.634, 0.651, 0.748, 0.756 and 0.736, respectively. The AUC of combined detection was 0.926, significantly greater than that of the single index (P < .001). Conclusion: Blink reflex combined with TSEP monitoring can improve the diagnostic value of trigeminal neuralgia, and the latency is related to pain.


Assuntos
Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/diagnóstico , Nervo Trigêmeo/fisiologia , Piscadela , Potenciais Somatossensoriais Evocados , Dor
20.
Nano Lett ; 22(8): 3473-3479, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35426684

RESUMO

The key to enabling high energy density of organic energy-storage systems is the development of high-voltage organic cathodes; however, the redox voltage (<4.0 V vs Li/Li+) of state-of-the-art organic electrode materials (OEMs) remains unsatisfactory. Herein, we propose a novel dibromotetraoxapentacene (DBTOP) redox center to surpass the redox potential limit of OEMs, achieving ultrahigh discharge plateaus of approximately 4.4 V (vs Li+/Li). As theoretically analyzed, electron delocalization between dioxin active centers and benzene rings as well as electron-withdrawing bromine atoms endows the molecule with a low occupied molecular orbital level by diluting the electron density of dioxin in the whole p-π conjugated skeleton, and the strong π-π interactions among the DBTOP molecules provide a faster electrochemical kinetic pathway. This tetraoxapentacene redox center makes the working voltage of OEMS closer to the high-voltage inorganic electrodes, and its chemical and structural tunability may stimulate the further development of high-voltage organic cathodes.


Assuntos
Dioxinas , Eletrodos , Elétrons , Lítio/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA