Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Cycle ; 23(2): 218-231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38466946

RESUMO

Cholangiocarcinoma (CCA) is a common gastrointestinal malignancy characterized by a poor prognosis. Considering its prevalence, exploring its underlying molecular biological mechanisms is of paramount clinical importance. In this study, bioinformatics techniques were utilized to analyze CCA sample data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The analysis revealed a notable upregulation in FUT4 expression in CCA samples. To further investigate the functional implications of FUT4, in vivo and in vitro experiments were conducted, which demonstrated that FUT4 overexpression significantly enhances the proliferative and migratory capabilities of tumor cells. Subsequent sequencing analysis unveiled a correlation between FUT4 and epithelial-mesenchymal transition (EMT). Indeed, the pioneering discovery of elevated FUT4 expression in CCA was highlighted in this study. Further investigations into the function of FUT4 in CCA provided initial insights into its role in driving cancer progression via EMT. These findings present promising avenues for the diagnosis and treatment of CCA.[Figure: see text].


Assuntos
Neoplasias dos Ductos Biliares , Movimento Celular , Proliferação de Células , Colangiocarcinoma , Progressão da Doença , Transição Epitelial-Mesenquimal , Fucosiltransferases , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colangiocarcinoma/metabolismo , Humanos , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/metabolismo , Linhagem Celular Tumoral , Animais , Proliferação de Células/genética , Movimento Celular/genética , Camundongos Nus , Camundongos , Camundongos Endogâmicos BALB C , Regulação para Cima/genética , Masculino
2.
J Gastrointest Oncol ; 15(3): 1198-1213, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989424

RESUMO

Background: Cholangiocarcinoma (CCA), a highly lethal tumor of the hepatobiliary system originating from bile duct epithelium, can be divided into the intrahepatic, hilar, and extrahepatic types. Due to its insidious onset and atypical early clinical symptoms, the overall prognosis is poor. One of the important factors contributing to the poor prognosis of CCA is the occurrence of perineural invasion (PNI), but the specific mechanisms regarding how it contributes to the occurrence of PNI are still unclear. The main purpose of this study is to explore the molecular mechanism leading to the occurrence of PNI and provide new ideas for clinical treatment. Methods: CCA cell lines and Schwann cells (SCs) were stimulated to observe the changes in cell behavior. SCs cocultured with tumor supernatant and SCs cultured in normal medium were subjected to transcriptome sequencing to screen the significantly upregulated genes. Following this, the two types of tumor cells were cultured with SC supernatant, and the changes in behavior of the tumor cells were observed. Nonobese diabetic-severe combined immunodeficiency disease (NOD-SCID) mice were injected with cell suspension supplemented with nerve growth factor (NGF) via the sciatic nerve. Four weeks later, the mice were euthanized and the tumor sections were removed and stained. Results: Nerve invasion by tumor cells was common in CCA tissues. SCs were observed in tumor tissues, and the number of SCs in tumor tissues and the degree of PNI were much higher than were those in normal tissues or tissues without PNI. The overall survival time was shorter in patients with CCA with PNI than in patients without PNI. SCs were enriched in CCA tissues, indicating the presence of PNI and associated with poor prognosis in CCA patients. CCA was found to promote NGF secretion from SCs in vitro. After the addition of exogenous NGF in CCA cell culture medium, the proliferation activity and migration ability of CCA cells were significantly increased, suggesting that SCs can promote the proliferation and migration of CCA through the secretion of NGF. NGF, in turn, was observed to promote epithelial-mesenchymal transition in CCA through tropomyosin receptor kinase A (TrkA), thus promoting its progression. Tumor growth in mice shows that NGF can promote PNI in CCA. Conclusions: In CCA, tumor cells can promote the secretion of NGF by SCs, which promotes the progression of CCA and PNI by binding to its high-affinity receptor TrkA, leading to poor prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA