Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Gastroenterol Hepatol ; 38(2): 290-300, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36342849

RESUMO

BACKGROUND AND AIM: Aberrant DNA methylation has been found in various cancer types including gastric cancer, yet the genome-wide DNA methylation profile of gastric cardia cancer (GCC) remains unclear. Therefore, we aimed to profile the DNA methylation pattern of GCC and identify promising diagnostic epigenetic biomarkers. METHODS: We investigated the genome-wide DNA methylation pattern in eight pairs of GCC and adjacent normal tissues using Illumina 850K microarrays. Subsequently, bisulfite-pyrosequencing and quantitative real-time PCR were performed on eight pairs of GCC-adjacent normal tissues for validation. Finally, we performed immunohistochemistry to examine ADHFE1 expression on 126 pairs of GCC-adjacent normal samples. RESULTS: DNA methylome analysis showed global hypomethylation and local hypermethylation of promoter cytosine-phosphate-guanine (CpG) islands (CGIs) in GCC tissues compared with gastric cardia normal mucosa (P < 2.2 × 10-16 ). Differential methylation analysis identified a total of 91 723 differentially-methylated probes (DMPs), and the candidate gene with the largest average DNA methylation difference mapped to ADHFE1 (mean Δß = 0.53). Subsequently, three DMPs in the ADHFE1 promoter were validated by pyrosequencing. Notably, the mean methylation level of the three candidate DMPs (ADHFE1_cg08090772, ADHFE1_cg19283840, and ADHFE1_cg20295442) was negatively associated with ADHFE1 mRNA expression level (Spearman rho = -0.64, P = 0.01). Moreover, both mRNA (P = 0.0213) and protein (P < 0.0001) expression of ADHFE1 were significantly decreased in GCCs compared with the adjacent normal tissues. CONCLUSIONS: Our results reveal DNA methylation aberrations in GCC and that ADHFE1 gene DNA methylation contributes to the risk of GCC, thus providing novel mechanistic insights into gastric cardia cancer carcinogenesis.


Assuntos
Metilação de DNA , Neoplasias Gástricas , Humanos , Cárdia , RNA Mensageiro , Ilhas de CpG , Regulação Neoplásica da Expressão Gênica
2.
Front Plant Sci ; 10: 178, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30846995

RESUMO

High levels of salinity induce serious oxidative damage in plants. Flavonoids, as antioxidants, have important roles in reactive oxygen species (ROS) scavenging. In the present study, the tobacco R2R3 MYB type repressor, NtMYB4, was isolated and characterized. The expression of NtMYB4 was suppressed by salinity. Overexpression of NtMYB4 reduced the salt tolerance in transgenic tobacco plants. NtMYB4 repressed the promoter activity of NtCHS1 and negatively regulated its expression. Rutin accumulation was significantly decreased in NtMYB4 overexpressing transgenic plants and NtCHS1 RNAi silenced transgenic plants. Moreover, high H2O2 and O 2 - contents were detected in both types of rutin-reduced transgenic plants under high salt stress. In addition, exogenous rutin supplementation effectively scavenged ROS (H2O2 and O 2 - ) and improved the salt tolerance of the rutin-reduced transgenic plants. In contrast, NtCHS1 overexpressing plants had increased rutin accumulation, lower H2O2 and O 2 - contents, and higher tolerance to salinity. These results suggested that tobacco NtMYB4 acts as a salinity response repressor and negatively regulates NtCHS1 expression, which results in the reduced flavonoid accumulation and weakened ROS-scavenging ability under salt stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA