Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38203325

RESUMO

Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States, with an estimated 52,000 deaths in 2023. Though significant progress has been made in both diagnosis and treatment of CRC in recent years, genetic heterogeneity of CRC-the culprit for possible CRC relapse and drug resistance, is still an insurmountable challenge. Thus, developing more effective therapeutics to overcome this challenge in new CRC treatment strategies is imperative. Genetic and epigenetic changes are well recognized to be responsible for the stepwise development of CRC malignancy. In this review, we focus on detailed genetic alteration information about the nuclear factor (NF)-κB signaling, including both NF-κB family members, and their regulators, such as protein arginine methyltransferase 5 (PRMT5), and outer dynein arm docking complex subunit 2 (ODAD2, also named armadillo repeat-containing 4, ARMC4), etc., in CRC patients. Moreover, we provide deep insight into different CRC research models, with a particular focus on patient-derived xenografts (PDX) and organoid models, and their potential applications in CRC research. Genetic alterations on NF-κB signaling components are estimated to be more than 50% of the overall genetic changes identified in CRC patients collected by cBioportal for Cancer Genomics; thus, emphasizing its paramount importance in CRC progression. Consequently, various genetic alterations on NF-κB signaling may hold great promise for novel therapeutic development in CRC. Future endeavors may focus on utilizing CRC models (e.g., PDX or organoids, or isogenic human embryonic stem cell (hESC)-derived colonic cells, or human pluripotent stem cells (hPSC)-derived colonic organoids, etc.) to further uncover the underpinning mechanism of these genetic alterations in NF-κB signaling in CRC progression. Moreover, establishing platforms for drug discovery in dishes, and developing Biobanks, etc., may further pave the way for the development of innovative personalized medicine to treat CRC in the future.


Assuntos
Neoplasias Colorretais , NF-kappa B , Humanos , Animais , NF-kappa B/genética , Transdução de Sinais/genética , Medicina de Precisão , Axonema , Modelos Animais de Doenças , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Proteína-Arginina N-Metiltransferases
2.
Gastroenterology ; 159(1): 289-305.e16, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32171747

RESUMO

BACKGROUND & AIMS: We investigated whether ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) is involved in development of hepatocellular carcinoma (HCC). METHODS: We analyzed clinical and gene expression data from The Cancer Genome Atlas. Albumin-Cre (HepWT) mice and mice with hepatocyte-specific disruption of Abl1 (HepAbl-/- mice) were given hydrodynamic injections of plasmids encoding the Sleeping Beauty transposase and transposons with the MET gene and a catenin ß1 gene with an N-terminal truncation, which induces development of liver tumors. Some mice were then gavaged with the ABL1 inhibitor nilotinib or vehicle (control) daily for 4 weeks. We knocked down ABL1 with short hairpin RNAs in Hep3B and Huh7 HCC cells and analyzed their proliferation and growth as xenograft tumors in mice. We performed RNA sequencing and gene set enrichment analysis of tumors. We knocked down or overexpressed NOTCH1 and MYC in HCC cells and analyzed proliferation. We measured levels of phosphorylated ABL1, MYC, and NOTCH1 by immunohistochemical analysis of an HCC tissue microarray. RESULTS: HCC tissues had higher levels of ABL1 than non-tumor liver tissues, which correlated with shorter survival times of patients. HepWT mice with the MET and catenin ß1 transposons developed liver tumors and survived a median 64 days; HepAbl-/- mice with these transposons developed tumors that were 50% smaller and survived a median 81 days. Knockdown of ABL1 in human HCC cells reduced proliferation, growth as xenograft tumors in mice, and expression of MYC, which reduced expression of NOTCH1. Knockdown of NOTCH1 or MYC in HCC cells significantly reduced cell growth. NOTCH1 or MYC overexpression in human HCC cells promoted proliferation and rescued the phenotype caused by ABL1 knockdown. The level of phosphorylated (activated) ABL1 correlated with levels of MYC and NOTCH1 in human HCC specimens. Nilotinib decreased expression of MYC and NOTCH1 in HCC cell lines, reduced the growth of xenograft tumors in mice, and slowed growth of liver tumors in mice with MET and catenin ß1 transposons, reducing tumor levels of MYC and NOTCH1. CONCLUSIONS: HCC samples have increased levels of ABL1 compared with nontumor liver tissues, and increased levels of ABL1 correlate with shorter survival times of patients. Loss or inhibition of ABL1 reduces proliferation of HCC cells and slows growth of liver tumors in mice. Inhibitors of ABL1 might be used for treatment of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Receptor Notch1/metabolismo , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Fígado/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Fosforilação , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Receptor Notch1/genética , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Molecules ; 26(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34500854

RESUMO

Patients with triple negative breast cancers (TNBCs)-highly aggressive tumors that do not express estrogen, progesterone, and human epidermal growth factor 2 receptors-have limited treatment options. Fewer than 30% of women with metastatic TNBC survive five years after their diagnosis, with a mortality rate within three months after a recurrence of 75%. Although TNBCs show a higher response to platinum therapy compared to other breast cancers, drug resistance remains a major obstacle; thus, platinum drugs with novel mechanisms are urgently needed. Arsenoplatins (APs) represent a novel class of anticancer agents designed to contain the pharmacophores of the two FDA approved drugs cisplatin and arsenic trioxide (As2O3) as one molecular entity. Here, we present the syntheses, crystal structures, DFT calculations, and antiproliferative activity of iodide analogs of AP-1 and AP-2, i.e., AP-5 and AP-4, respectively. Antiproliferative studies in TNBC cell lines reveal that all AP family members are more potent than cisplatin and As2O3 alone. DFT calculations demonstrate there is a low energy barrier for hydrolysis of the platinum-halide bonds in arsenoplatins, possibly contributing to their higher cytotoxicities compared to cisplatin.


Assuntos
Antineoplásicos/química , Trióxido de Arsênio/química , Cisplatino/química , Iodetos/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Trióxido de Arsênio/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Resistência a Medicamentos , Quimioterapia Combinada , Humanos , Iodetos/farmacologia , Conformação Molecular , Preparações Farmacêuticas , Análise Espacial , Relação Estrutura-Atividade
4.
Breast Cancer Res ; 21(1): 137, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801599

RESUMO

PURPOSE: Liquid biopsies, including circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs), can be used to understand disease prognosis, tumor heterogeneity, and dynamic response to treatment in metastatic breast cancer (MBC). We explored a novel, 180-gene ctDNA panel and the association of this platform with CTCs and CTC clusters. METHODS: A total of 40 samples from 22 patients with MBC were included in the study. For the primary analysis, all patients had ctDNA sequencing using the PredicinePLUS™ platform. CTCs and CTC clusters were examined using the CellSearch™ System. Clinical and pathological variables were reported using descriptive analyses. Associations between CTC count and specific genomic alterations were tested using the Mann-Whitney U test. RESULTS: Of 43 sequenced patients, 40 (93%) had at least one detectable genomic alteration with a median of 6 (range 1-22). Fifty-seven different genes were altered, and the landscape of genomic alterations was representative of MBC, including the commonly encountered alterations TP53, PTEN, PIK3CA, ATM, BRCA1, CCND1, ESR1, and MYC. In patients with predominantly hormone-receptor-positive MBC, the number of CTCs was significantly associated with alterations in ESR1 (P < 0.005), GATA3 (P < 0.05), CDH1 (P < 0.0005), and CCND1 (P < 0.05) (Mann-Whitney U test). Thirty-six percent of patients had CTC clusters, which were associated with alterations in CDH1, CCND1, and BRCA1 (all P < 0.05, Mann-Whitney U test). In an independent validation cohort, CTC enumeration confirmed significant associations with ESR1 and GATA3, while CTC clusters were significantly associated with CDH1. CONCLUSIONS: We report on a novel ctDNA platform that detected genomic alterations in the vast majority of tested patients, further indicating potential clinical utility for capturing disease heterogeneity and for disease monitoring. Detection of CTCs and CTC clusters was associated with particular genomic profiles.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , DNA Tumoral Circulante , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metástase Neoplásica , Estadiamento de Neoplasias
5.
Hum Reprod ; 31(7): 1540-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27130615

RESUMO

STUDY QUESTION: Does halofuginone (HF) inhibit the growth of human uterine leiomyoma cells in a mouse xenograft model? SUMMARY ANSWER: HF suppresses the growth of human uterine leiomyoma cells in a mouse xenograft model through inhibiting cell proliferation and inducing apoptosis. WHAT IS KNOWN ALREADY: Uterine leiomyomas are the most common benign tumors of the female reproductive tract. HF can suppress the growth of human uterine leiomyoma cells in vitro. The mouse xenograft model reflects the characteristics of human leiomyomas. STUDY DESIGN, SIZE, DURATION: Primary leiomyoma smooth muscle cells from eight patients were xenografted under the renal capsule of adult, ovariectomized NOD-scid IL2Rγ(null) mice (NSG). Mice were treated with two different doses of HF or vehicle for 4 weeks with six to eight mice per group. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mouse body weight measurements and immunohistochemical analysis of body organs were carried out to assess the safety of HF treatment. Xenografted tumors were measured and analyzed for cellular and molecular changes induced by HF. Ovarian steroid hormone receptors were evaluated for possible modulation by HF. MAIN RESULTS AND THE ROLE OF CHANCE: Treatment of mice carrying human UL xenografts with HF at 0.25 or 0.50 mg/kg body weight for 4 weeks resulted in a 35-40% (P < 0.05) reduction in tumor volume. The HF-induced volume reduction was accompanied by increased apoptosis and decreased cell proliferation. In contrast, there was no significant change in the collagen content either at the transcript or protein level between UL xenografts in control and HF groups. HF treatment did not change the expression level of ovarian steroid hormone receptors. No adverse pathological effects were observed in other tissues from mice undergoing treatment at these doses. LIMITATIONS, REASONS FOR CAUTION: While this study did test the effects of HF on human leiomyoma cells in an in vivo model, HF was administered to mice whose tolerance and metabolism of the drug may differ from that in humans. Also, the longer term effects of HF treatment are yet unclear. WIDER IMPLICATIONS OF THE FINDINGS: The results of this study showing the effectiveness of HF in reducing UL tumor growth by interfering with the main cellular processes regulating cell proliferation and apoptosis are in agreement with previous studies on the effects of HF on other fibrotic diseases. HF can be considered as a candidate for reducing the size of leiomyomas, particularly prior to surgery. STUDY FUNDING/COMPETING INTERESTS: This project was funded by NIH PO1HD057877 and R01 HD064402. Authors report no competing interests.


Assuntos
Antineoplásicos/uso terapêutico , Leiomioma/tratamento farmacológico , Piperidinas/uso terapêutico , Quinazolinonas/uso terapêutico , Neoplasias Uterinas/tratamento farmacológico , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Peso Corporal , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Imuno-Histoquímica , Leiomioma/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Piperidinas/efeitos adversos , Piperidinas/farmacologia , Quinazolinonas/efeitos adversos , Quinazolinonas/farmacologia , Neoplasias Uterinas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Proc Natl Acad Sci U S A ; 110(42): 17053-8, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082114

RESUMO

Uterine leiomyomas are extremely common estrogen and progesterone-dependent tumors of the myometrium and cause irregular uterine bleeding, severe anemia, and recurrent pregnancy loss in 15-30% of reproductive-age women. Each leiomyoma is thought to arise from a single mutated myometrial smooth muscle stem cell. Leiomyoma side-population (LMSP) cells comprising 1% of all tumor cells and displaying tumor-initiating stem cell characteristics are essential for estrogen- and progesterone-dependent in vivo growth of tumors, although they have remarkably lower estrogen/progesterone receptor levels than mature myometrial or leiomyoma cells. However, how estrogen/progesterone regulates the growth of LMSP cells via mature neighboring cells is unknown. Here, we demonstrate a critical paracrine role of the wingless-type (WNT)/ß-catenin pathway in estrogen/progesterone-dependent tumorigenesis, involving LMSP and differentiated myometrial or leiomyoma cells. Estrogen/progesterone treatment of mature myometrial cells induced expression of WNT11 and WNT16, which remained constitutively elevated in leiomyoma tissues. In LMSP cells cocultured with mature myometrial cells, estrogen-progesterone selectively induced nuclear translocation of ß-catenin and induced transcriptional activity of its heterodimeric partner T-cell factor and their target gene AXIN2, leading to the proliferation of LMSP cells. This effect could be blocked by a WNT antagonist. Ectopic expression of inhibitor of ß-catenin and T-cell factor 4 in LMSP cells, but not in mature leiomyoma cells, blocked the estrogen/progesterone-dependent growth of human tumors in vivo. We uncovered a paracrine role of the WNT/ß-catenin pathway that enables mature myometrial or leiomyoma cells to send mitogenic signals to neighboring tissue stem cells in response to estrogen and progesterone, leading to the growth of uterine leiomyomas.


Assuntos
Proliferação de Células , Estrogênios/metabolismo , Leiomioma/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Comunicação Parácrina , Progesterona/metabolismo , Neoplasias Uterinas/metabolismo , Proteínas Wnt/biossíntese , Via de Sinalização Wnt , beta Catenina/metabolismo , Adulto , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Estrogênios/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leiomioma/genética , Leiomioma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia , Gravidez , Progesterona/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Proteínas Wnt/genética , beta Catenina/genética
7.
Cancer ; 120(20): 3165-77, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24986214

RESUMO

BACKGROUND: Uterine smooth muscle tumors (USMTs) constitute a group of histologic, genetic, and clinical heterogeneous tumors that include at least 6 major histologically defined tumor types: leiomyoma (ULM), mitotically active leiomyoma (MALM), cellular leiomyoma (CLM), atypical leiomyoma (ALM), uncertain malignant potential (STUMP), and leiomyosarcoma (LMS). Apart from ULM and LMS, the nature of these variants is not well defined. METHODS: A total of 167 cases of different USMT variants were collected, reviewed, and diagnostically confirmed based on the World Health Organization and Stanford schemes. These included 38 cases of LMS, 18 cases of STUMP, 42 cases of ALM, 22 cases of CLM, 7 cases of MALM, and 40 cases of ULM. Molecular analysis included selected microRNAs (miRNAs), oncogenes, and tumor suppressors that are highly relevant to USMT. RESULTS: Overall, 49% (17/35) of LMS cases and 7% (1/14) of STUMP cases died due to their USMT, but no deaths were attributed to ALM. miRNA profiling revealed that ALM and LMS shared similar miRNA signatures. P53 mutations and PTEN deletions were significantly higher in LMS, ALM, and STUMP compared with other USMT variants (P < .01). In contrast, MED12 mutations were extremely common in ULM and MALM (> 74%) but were significantly less common (< 15%) in CLM, ALM, STUMP, and LMS (P < .01). CONCLUSION: Six types of USMT have different gene mutation fingerprints. ALM shares many molecular alterations with LMS. Our findings suggest that ALM may be a precursor lesion of LMS or have similar genetic changes during its early stage.


Assuntos
Biomarcadores Tumorais/genética , Leiomioma/genética , Leiomiossarcoma/genética , Tumor de Músculo Liso/genética , Neoplasias Uterinas/genética , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Leiomioma/metabolismo , Leiomioma/patologia , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Pessoa de Meia-Idade , Mutação , Tumor de Músculo Liso/metabolismo , Tumor de Músculo Liso/patologia , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia
8.
Mod Pathol ; 27(8): 1144-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24390224

RESUMO

Recent identification of somatic MED12 mutations in most uterine leiomyomas brings a new venue for the study of the tumorigenesis of leiomyomas. We are particularly interested in the correlation of MED12 and HMGA2 gene products in leiomyomas and leiomyosarcomas with and without MED12 mutations. To address these issues, in this study we examined MED12 mutations in a large cohort of usual type leiomyomas (178 cases) and uterine leiomyosarcomas (32 cases). We found that 74.7% (133/178) of leiomyomas had MED12 mutations, which was consistent with several independent studies. In contrast, only 9.7% (3/32) of leiomyosarcomas harbored MED12 mutations. Expression analysis by western blot and immunohistochemistry revealed that those leiomyomas with complex MED12 mutations had significantly lower protein products than the matched myometrium. Interestingly, most leiomyosarcomas without MED12 mutations also had very low levels of MED12 expression in comparison to the matched myometrium. These findings suggest a potential functional role of MED12 in both benign and malignant uterine smooth muscle tumors. When we further examined HMGA2 expression in all leiomyomas and leiomyosarcomas, we found that HMGA2 overexpression was exclusively present in those leiomyomas with no MED12 mutation, accounting for 10.1% (18/178) of total leiomyomas and 40% (18/45) of non-MED12 mutant leiomyomas. Twenty-five percent (8/32) of leiomyosarcomas had HMGA2 overexpression, and no MED12 mutations were found in HMGA2 positive leiomyosarcoma. These findings strongly suggest that MED12 mutations and HMGA2 overexpression are independent genetic events that occur in leiomyomas, and they may act differently in the tumorigenesis of uterine leiomyomas.


Assuntos
Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Proteína HMGA2/análise , Leiomioma/genética , Leiomiossarcoma/genética , Complexo Mediador/genética , Mutação , Neoplasias Uterinas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Análise Mutacional de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Proteína HMGA2/genética , Humanos , Imuno-Histoquímica , Leiomioma/química , Leiomioma/patologia , Leiomiossarcoma/química , Leiomiossarcoma/patologia , Complexo Mediador/análise , Pessoa de Meia-Idade , Fenótipo , Translocação Genética , Regulação para Cima , Neoplasias Uterinas/química , Neoplasias Uterinas/patologia , Adulto Jovem
9.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559262

RESUMO

The intricate structure of chromosomes is complex, and many aspects of chromosome configuration/organization remain to be fully understood. Measuring chromosome stiffness can provide valuable insights into their structure. However, the nature of chromosome stiffness, whether static or dynamic, remains elusive. In this study, we analyzed chromosome stiffness in MI and MII oocytes. We revealed that MI oocytes had a ten-fold increase in stiffness compared to mitotic chromosomes, whereas chromosome stiffness in MII oocytes was relatively low chromosome. We then investigated the contribution of meiosis-specific cohesin complexes to chromosome stiffness in MI and MII oocytes. Surprisingly, the Young's modulus of chromosomes from the three meiosis-specific cohesin mutants did not exhibit significant differences compared to the wild type, indicating that these proteins may not play a substantial role in determining chromosome stiffness. Additionally, our findings revealed an age-related increase in chromosome stiffness in MI oocytes. Age correlates with elevated DNA damage levels, so we investigated the impact of etoposide-induced DNA damage on chromosome stiffness, discovering a reduction in stiffness in response to such damage in MI oocytes. Overall, our study underscores the dynamic nature of chromosome stiffness, subject to changes influenced by the cell cycle and age.

10.
Adv Sci (Weinh) ; 11(13): e2305212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263873

RESUMO

Platinum (Pt)-based chemotherapy is the main treatment for ovarian cancer (OC); however, most patients develop Pt resistance (Pt-R). This work shows that Pt-R OC cells increase intracellular cholesterol through uptake via the HDL receptor, scavenger receptor type B-1 (SR-B1). SR-B1 blockade using synthetic cholesterol-poor HDL-like nanoparticles (HDL NPs) diminished cholesterol uptake leading to cell death and inhibition of tumor growth. Reduced cholesterol accumulation in cancer cells induces lipid oxidative stress through the reduction of glutathione peroxidase 4 (GPx4) leading to ferroptosis. In turn, GPx4 depletion induces decreased cholesterol uptake through SR-B1 and re-sensitizes OC cells to Pt. Mechanistically, GPx4 knockdown causes lower expression of the histone acetyltransferase EP300, leading to reduced deposition of histone H3 lysine 27 acetylation (H3K27Ac) on the sterol regulatory element binding transcription factor 2 (SREBF2) promoter and suppressing expression of this key transcription factor involved in the regulation of cholesterol metabolism. SREBF2 downregulation leads to decreased SR-B1 expression and diminished cholesterol uptake. Thus, chemoresistance and cancer cell survival under high ROS burden obligates high GPx4 and SR-B1 expression through SREBF2. Targeting SR-B1 to modulate cholesterol uptake inhibits this axis and causes ferroptosis in vitro and in vivo in Pt-R OC.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Receptores Depuradores Classe B/metabolismo , Colesterol/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Oxirredução
11.
Mol Cancer Ther ; 21(5): 810-820, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247912

RESUMO

The lack of effective RAS inhibition represents a major unmet medical need in the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we investigate the anticancer activity of RRSP-DTB, an engineered biologic that cleaves the Switch I of all RAS isoforms, in KRAS-mutant PDAC cell lines and patient-derived xenografts (PDX). We first demonstrate that RRSP-DTB effectively engages RAS and impacts downstream ERK signaling in multiple KRAS-mutant PDAC cell lines inhibiting cell proliferation at picomolar concentrations. We next tested RRSP-DTB in immunodeficient mice bearing KRAS-mutant PDAC PDXs. Treatment with RRSP-DTB led to ≥95% tumor regression after 29 days. Residual tumors exhibited disrupted tissue architecture, increased fibrosis and fewer proliferating cells compared with controls. Intratumoral levels of phospho-ERK were also significantly lower, indicating in vivo target engagement. Importantly, tumors that started to regrow without RRSP-DTB shrank when treatment resumed, demonstrating resistance to RRSP-DTB had not developed. Tracking persistence of the toxin activity following intraperitoneal injection showed that RRSP-DTB is active in sera from immunocompetent mice for at least 1 hour, but absent after 16 hours, justifying use of daily dosing. Overall, we report that RRSP-DTB strongly regresses hard-to-treat KRAS-mutant PDX models of pancreatic cancer, warranting further development of this pan-RAS biologic for the management of RAS-addicted tumors.


Assuntos
Produtos Biológicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas
12.
Cancers (Basel) ; 14(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008244

RESUMO

Although the detection of CTCs expressing HER2 at low intensity (HER2-low CTCs) has been shown to have a negative prognostic value in metastatic breast cancer (MBC) patients, the biological intrinsic nature of HER2-low CTCs remains unexplored. Considering the technical challenges behind the selective collection of immunophenotype-specific CTCs, we developed a pipeline to individually capture HER2-low CTCs. Four different breast cancer cell lines (MDA-MB-231, T47D, MDA-MB-453, and SKBR3), that are known to express HER2 at different immunohistochemistry levels (respectively classified as 0, 1+, 2+, and 3+), were spiked in healthy donor blood tubes (7.5 mL) and processed with the CellSearch® (Menarini Silicon Biosystems, Bologna, Italy) for enrichment and the DEPArray NxT™ for single cell selection. The HER2 signal-intensities of each cell line was compared using the nonparametric Mann-Whitney U test. The optimal cut-offs to distinguish HER2 1+ from 0 and 2+ cells were calculated performing the Receiver operating characteristic (ROC) curve. Median HER2 signal-intensities detected with the DEPArray NxT™ were: 2.59 (0), 3.58 (1+), 5.23 (2+) and 38.37 (3+). DEPArray NxT efficiently differentiated each single cell line (p < 0.001). The area under the ROC curve was 0.69 and 0.70 (respectively 0 vs. 1+ and 1+ vs. 2+) and the optimal calculated cut-offs were 2.85 (lower) and 4.64 (upper). HER2-low CTCs can be detected and separately collected using predetermined intensity cut-offs. This study will allow standardized single-cell or pooled collection of HER2-low CTCs for downstream molecular analyses.

13.
Oncogene ; 40(18): 3273-3286, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33846574

RESUMO

We provide evidence that a member of the human Schlafen (SLFN) family of proteins, SLFN5, is overexpressed in human pancreatic ductal adenocarcinoma (PDAC). Targeted deletion of SLFN5 results in decreased PDAC cell proliferation and suppresses PDAC tumorigenesis in in vivo PDAC models. Importantly, high expression levels of SLFN5 correlate with worse outcomes in PDAC patients, implicating SLFN5 in the pathophysiology of PDAC that leads to poor outcomes. Our studies establish novel regulatory effects of SLFN5 on cell cycle progression through binding/blocking of the transcriptional repressor E2F7, promoting transcription of key genes that stimulate S phase progression. Together, our studies suggest an essential role for SLFN5 in PDAC and support the potential for developing new therapeutic approaches for the treatment of pancreatic cancer through SLFN5 targeting.


Assuntos
Neoplasias Pancreáticas , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas
14.
Fertil Steril ; 114(5): 1085-1096, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32868105

RESUMO

OBJECTIVE: To study the role of HMGA2 in promoting angiogenesis in uterine leiomyoma (LM). DESIGN: This study involved evaluation of vessel density and angiogenic factors in leiomyomas with HMGA2 overexpression; examining angiogenic factor expression and AKT signaling in myometrial (MM) and leiomyoma cells by introducing HMGA2 overexpression in vitro; and exploring vessel formation induced by HMGA2 overexpression both in vitro and in vivo. SETTING: University research laboratory. PATIENTS: None. INTERVENTIONS: None. MAIN OUTCOME MEASURES: The main outcome measures include vessel density in leiomyomas with HMGA2 (HMGA2-LM) or MED12 (MED12-LM) alteration; angiogenic factor expression in primary leiomyoma and in vitro cell line model; and vessel formation in leiomyoma cells with HMGA2 overexpression in vitro and in vivo. RESULTS: Angiogenic factors and receptors were significantly upregulated at mRNA and protein levels in HMGA2-LM. Specifically, HMGA2-LM exhibited increased expression of VEGFA, EGF, bFGF, TGFα, VEGFR1, and VEGFR2 compared to MED12-LM and myometrium. Overexpression of HMGA2 in MM and LM cell lines resulted in increased secretion of angiogenesis-associated factors. Secreted factors promoted human umbilical vein endothelial cell (HUVEC) migration, tube formation, and wound healing. HMGA2 overexpression upregulated IGF2BP2 and pAKT, and silencing the IGF2BP2 gene reduced pAKT levels and reduced HUVEC migration. Myometrial cells with stable HMGA2 overexpression exhibited increased colony formation and cell growth in vitro and formed xenografts with increased blood vessels. CONCLUSIONS: HMGA2-LM have a high vasculature density, which likely contributes to tumor growth and disease burden of this leiomyoma subtype. HMGA2 plays an important role in angiogenesis and the involvement of IGF2BP2-mediated pAKT activity in angiogenesis, which provides a potential novel target for therapy for this subtype of LM.


Assuntos
Carcinogênese/metabolismo , Proteína HMGA2/biossíntese , Leiomioma/metabolismo , Neovascularização Patológica/metabolismo , Neoplasias Uterinas/metabolismo , Animais , Carcinogênese/patologia , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Leiomioma/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neovascularização Patológica/patologia , Neoplasias Uterinas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
Crit Rev Oncol Hematol ; 145: 102856, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31884205

RESUMO

Circulating tumor DNA (ctDNA) is gaining momentum as sensitive diagnostic tool for advanced disease characterization because of its ability both to capture the tumor's heterogeneity and its dynamic adaptations. However, the consistency between all the available platforms is still debated. The aim of the study was to explore the performance of the novel diagnostic NGS platform PredicinePLUS™ and to compare its results with the clinically available Guardant360™ platform for possible analytical inconsistencies. The study suggests that PredicinePLUS™ NGS platform can detect genomic alterations and measure allele frequency in samples of MBC patients and confirmed that different NGS platforms could be potentially compared provided that certain sample management and analytical requirements are met.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , DNA Tumoral Circulante , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Genômica , Humanos , Mutação
16.
Chin Med ; 14: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572487

RESUMO

BACKGROUND: Sigesbeckia glabrescens Makino (SG) is one of the important plant origins of Sigesbeckiae herba and has been widely used for the treatment of chronic inflammatory diseases in China. However, the underlying anti-inflammatory mechanism of SG is rarely investigated and reported. There are more than 40 kinds of chemical constituents in SG, but the action of the bioactive compounds of SG is still unclear. Therefore, we aimed to systemically investigate the mechanisms behind the anti-inflammatory properties of SG by combining in vitro and in silico investigations. METHODS: Cytotoxicity was measured using the 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Nitric oxide (NO) release was detected using the Griess assay. The secretion of pro-inflammatory cytokines and the expression of relevant proteins were assessed using ELISA kits and Western blots, respectively. Molecular docking was performed and scored using AutoDock via a comparison with the molecular docking of N-acetyl-d-glucosamine (NAG). RESULTS: In lipopolysaccharides (LPS)-stimulated macrophages, SG significantly inhibited NO, MCP-1, and IL-6 secretion; iNOS expression; and NF-κB activation but did not significantly affect MAPK signalling (p38, ERK, and JNK). Moreover, the results from the molecular docking prediction suggested that over 10 compounds in SG could likely target TLR4, p105, and p65. CONCLUSIONS: These findings suggest that the anti-inflammatory effects of SG are highly related to the inactivation of NF-κB. Moreover, this study provides a novel approach to investigate the effects of herbal medicine using combined in vitro and in silico investigations.

17.
Cell Rep ; 26(9): 2434-2450.e6, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30811992

RESUMO

Body and organ size regulation in mammals involves multiple signaling pathways and remains largely enigmatic. Here, we report that Pum1 and Pum2, which encode highly conserved PUF RNA-binding proteins, regulate mouse body and organ size by post-transcriptional repression of the cell cycle inhibitor Cdkn1b. Binding of PUM1 or PUM2 to Pumilio binding elements (PBEs) in the 3' UTR of Cdkn1b inhibits translation, promoting G1-S transition and cell proliferation. Mice with null mutations in Pum1 and Pum2 exhibit gene dosage-dependent reductions in body and organ size, and deficiency for Cdkn1b partially rescues postnatal growth defects in Pum1-/- mice. We propose that coordinated tissue-specific expression of Pum1 and Pum2, which involves auto-regulatory and reciprocal post-transcriptional repression, contributes to the precise regulation of body and organ size. Hence PUM-mediated post-transcriptional control of cell cycle regulators represents an additional layer of control in the genetic regulation of organ and body size.


Assuntos
Tamanho Corporal/genética , Inibidor de Quinase Dependente de Ciclina p27/genética , Regulação da Expressão Gênica , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Regiões 3' não Traduzidas , Animais , Ciclo Celular , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Transtornos do Crescimento/genética , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Fenótipo , Proteínas de Ligação a RNA/metabolismo
18.
Mol Cancer Res ; 17(1): 70-83, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171177

RESUMO

Patient-derived pancreatic ductal adenocarcinoma (PDAC) organoid systems show great promise for understanding the biological underpinnings of disease and advancing therapeutic precision medicine. Despite the increased use of organoids, the fidelity of molecular features, genetic heterogeneity, and drug response to the tumor of origin remain important unanswered questions limiting their utility. To address this gap in knowledge, primary tumor- and patient-derived xenograft (PDX)-derived organoids, and 2D cultures for in-depth genomic and histopathologic comparisons with the primary tumor were created. Histopathologic features and PDAC representative protein markers (e.g., claudin 4 and CA19-9) showed strong concordance. DNA- and RNA-sequencing (RNAseq) of single organoids revealed patient-specific genomic and transcriptomic consistency. Single-cell RNAseq demonstrated that organoids are primarily a clonal population. In drug response assays, organoids displayed patient-specific sensitivities. In addition, the in vivo PDX response to FOLFIRINOX and gemcitabine/abraxane treatments were examined, which was recapitulated in vitro with organoids. This study has demonstrated that organoids are potentially invaluable for precision medicine as well as preclinical drug treatment studies because they maintain distinct patient phenotypes and respond differently to drug combinations and dosage. IMPLICATIONS: The patient-specific molecular and histopathologic fidelity of organoids indicate that they can be used to understand the etiology of the patient's tumor and the differential response to therapies and suggests utility for predicting drug responses.


Assuntos
Adenocarcinoma/genética , Organoides/metabolismo , Neoplasias Pancreáticas/genética , Animais , Humanos , Camundongos
19.
Artigo em Inglês | MEDLINE | ID: mdl-30305911

RESUMO

BACKGROUND: Ovarian cancer remains a major health problem for women as it is often diagnosed at a late stage with metastatic disease. There are limited therapeutic agents and survival rates remain poor. The perinucleolar compartment (PNC) has been shown to be associated with malignancy and is considered a surrogate phenotypic marker for metastatic cancer cells. A small molecule, ML246, was derived from a screen against PNCs. In this study, the effect of ML246 on ovarian cancer growth and spread was investigated. METHODS: SKOV3 or OVCAR3 cells were treated with ML246 in vitro and PNC was visualized with immunofluorescent staining. Cell invasion was assessed using Matrigel-coated transwell systems. SKOV3 cells were xenografted orthotopically under the ovarian bursa of immunocompromised mice. Additionally, a patient derived ovarian cancer cell line was grafted subcutaneously. Mice were treated with ML246 and tumor growth and spread was assessed. RESULTS: PNCs were prevalent in the ovarian cancer cell lines OVCAR3 and SKOV3 with higher prevalence in OVCAR3 cells. Treatment with ML246 significantly reduced PNC prevalence in OVCAR3 and SKOV3 cells. Moreover, the invasive activity of both cell lines was significantly inhibited in vitro. Orthotopic implantation of SKOV3 cells resulted in growth of the tumor on the ovary as well as spread of tumor tissues outside of the primary site on organs into the abdominal cavity. Treatment with ML246 decreased the incidence of tumors outside of the ovary. In addition, a patient-derived xenograft (PDX) line was grafted subcutaneously to monitor tumor growth. ML246 significantly attenuated growth of tumors over a 5-week treatment period. CONCLUSIONS: PNC's are present in ovarian cancer cells and treatment with ML246 decreases invasion in vitro and tumor growth and spread in vivo. Additional studies are warranted to determine the efficacy of ML246 as an inhibitor of metastatic disease in ovarian cancer and to determine its precise mechanism of action.

20.
J Cancer ; 9(14): 2472-2479, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30026845

RESUMO

For recurrent ovarian cancer (ROC), secondary cytoreductive surgery (SCS) is recommended as one optional treatment. However, little is known about the expression and clinical significance of biomarkers during SCS. Human epididymis protein 4 (HE4) is a clinical biomarker for ovarian cancer. Eukaryotic translation initiation factor 3a (eIF3a) is investigated extensively as a potential biomarker for malignancy. The purpose of this study was to investigate the expressions of HE4 and eIF3a at SCS, as well as their associations with surgical outcome and survival in ROC patients. Immunohistochemistry was performed to determine the expressions of HE4 and eIF3a in ovarian tumors taken from both initial and secondary cytoreductive surgery of 35 ROC patients. eIF3a levels were significantly increased at SCS, compared to those at initial cytoreductive surgery (ICS), while HE4 levels were similar. Both HE4 and eIF3a expressions were associated with surgical outcome, in terms of residual tumor. For ICS, patients with high HE4 expression achieved a higher incidence of optimal cytoreduction than those with low HE4 expression (81.0% vs. 33.3%, P = 0.015). A similar result happened in SCS, indicated by higher incidence of no residual tumor in patients with high HE4 expression (76.4% vs. 44.4%, P = 0.046). And high HE4 expression at SCS was more likely to enhance surgical outcome of SCS (77.8% vs. 29.4%, P = 0.038). Therefore, high HE4 expression at either surgery is a predictor of better overall survival (OS) (P = 0.011 and 0.002). Furthermore, patients with an elevated total score (TS) of HE4 between the two surgeries tended to have prolonged OS, compared to those with a non-elevated TS of HE4 (P = 0.076). For eIF3a, initial eIF3a expression was associated with secondary residual tumor (P = 0.035), and the difference in eIF3a expression between the two surgeries correlated with OS (P = 0.052). The expressions of HE4 and eIF3a in tumor specimens correlated with surgical outcome and predicted OS in ROC patients with SCS, thus meriting further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA