Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37482409

RESUMO

Numerous biological studies have shown that considering disease-associated micro RNAs (miRNAs) as potential biomarkers or therapeutic targets offers new avenues for the diagnosis of complex diseases. Computational methods have gradually been introduced to reveal disease-related miRNAs. Considering that previous models have not fused sufficiently diverse similarities, that their inappropriate fusion methods may lead to poor quality of the comprehensive similarity network and that their results are often limited by insufficiently known associations, we propose a computational model called Generative Adversarial Matrix Completion Network based on Multi-source Data Fusion (GAMCNMDF) for miRNA-disease association prediction. We create a diverse network connecting miRNAs and diseases, which is then represented using a matrix. The main task of GAMCNMDF is to complete the matrix and obtain the predicted results. The main innovations of GAMCNMDF are reflected in two aspects: GAMCNMDF integrates diverse data sources and employs a nonlinear fusion approach to update the similarity networks of miRNAs and diseases. Also, some additional information is provided to GAMCNMDF in the form of a 'hint' so that GAMCNMDF can work successfully even when complete data are not available. Compared with other methods, the outcomes of 10-fold cross-validation on two distinct databases validate the superior performance of GAMCNMDF with statistically significant results. It is worth mentioning that we apply GAMCNMDF in the identification of underlying small molecule-related miRNAs, yielding outstanding performance results in this specific domain. In addition, two case studies about two important neoplasms show that GAMCNMDF is a promising prediction method.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , Algoritmos , Biologia Computacional/métodos , Neoplasias/genética , Bases de Dados Genéticas , Predisposição Genética para Doença
2.
Radiol Med ; 129(1): 48-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38082195

RESUMO

OBJECT: The purpose of this study was to explore a machine learning-based residual networks (ResNets) model to detect atrial septal defect (ASD) on chest radiographs. METHODS: This retrospective study included chest radiographs consecutively collected at our hospital from June 2017 to May 2022. Qualified chest radiographs were obtained from patients who had finished echocardiography. These chest radiographs were labeled as positive or negative for ASD based on the echocardiographic reports and were divided into training, validation, and test dataset. Six ResNets models were employed to examine and compare by using the training dataset and was tuned using the validation dataset. The area under the curve, recall, precision and F1-score were taken as the evaluation metrics for classification result in the test dataset. Visualizing regions of interest for the ResNets models using heat maps. RESULTS: This study included a total of 2105 chest radiographs of children with ASD (mean age 4.14 ± 2.73 years, 54% male), patients were randomly assigned to training, validation, and test dataset with an 8:1:1 ratio. Healthy children's images were supplemented to three datasets in a 1:1 ratio with ASD patients. Following the training, ResNet-10t and ResNet-18D have a better estimation performance, with precision, recall, accuracy, F1-score, and the area under the curve being (0.92, 0.93), (0.91, 0.91), (0.90, 0.90), (0.91, 0.91) and (0.97, 0.96), respectively. Compared to ResNet-18D, ResNet-10t was more focused on the distribution of the heat map of the interest region for most chest radiographs from ASD patients. CONCLUSION: The ResNets model is feasible for identifying ASD through children's chest radiographs. ResNet-10t stands out as the preferable estimation model, providing exceptional performance and clear interpretability.


Assuntos
Ecocardiografia , Comunicação Interatrial , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Comunicação Interatrial/diagnóstico por imagem , Aprendizado de Máquina , Radiografia , Estudos Retrospectivos
3.
Entropy (Basel) ; 26(1)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38275504

RESUMO

Federated learning allows multiple parties to train models while jointly protecting user privacy. However, traditional federated learning requires each client to have the same model structure to fuse the global model. In real-world scenarios, each client may need to develop personalized models based on its environment, making it difficult to perform federated learning in a heterogeneous model environment. Some knowledge distillation methods address the problem of heterogeneous model fusion to some extent. However, these methods assume that each client is trustworthy. Some clients may produce malicious or low-quality knowledge, making it difficult to aggregate trustworthy knowledge in a heterogeneous environment. To address these challenges, we propose a trustworthy heterogeneous federated learning framework (FedTKD) to achieve client identification and trustworthy knowledge fusion. Firstly, we propose a malicious client identification method based on client logit features, which can exclude malicious information in fusing global logit. Then, we propose a selectivity knowledge fusion method to achieve high-quality global logit computation. Additionally, we propose an adaptive knowledge distillation method to improve the accuracy of knowledge transfer from the server side to the client side. Finally, we design different attack and data distribution scenarios to validate our method. The experiment shows that our method outperforms the baseline methods, showing stable performance in all attack scenarios and achieving an accuracy improvement of 2% to 3% in different data distributions.

4.
BMC Med Inform Decis Mak ; 21(1): 319, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34789236

RESUMO

BACKGROUND: A large number of biological studies have shown that miRNAs are inextricably linked to many complex diseases. Studying the miRNA-disease associations could provide us a root cause understanding of the underlying pathogenesis in which promotes the progress of drug development. However, traditional biological experiments are very time-consuming and costly. Therefore, we come up with an efficient models to solve this challenge. RESULTS: In this work, we propose a deep learning model called EOESGC to predict potential miRNA-disease associations based on embedding of embedding and simplified convolutional network. Firstly, integrated disease similarity, integrated miRNA similarity, and miRNA-disease association network are used to construct a coupled heterogeneous graph, and the edges with low similarity are removed to simplify the graph structure and ensure the effectiveness of edges. Secondly, the Embedding of embedding model (EOE) is used to learn edge information in the coupled heterogeneous graph. The training rule of the model is that the associated nodes are close to each other and the unassociated nodes are far away from each other. Based on this rule, edge information learned is added into node embedding as supplementary information to enrich node information. Then, node embedding of EOE model training as a new feature of miRNA and disease, and information aggregation is performed by simplified graph convolution model, in which each level of convolution can aggregate multi-hop neighbor information. In this step, we only use the miRNA-disease association network to further simplify the graph structure, thus reducing the computational complexity. Finally, feature embeddings of both miRNA and disease are spliced into the MLP for prediction. On the EOESGC evaluation part, the AUC, AUPR, and F1-score of our model are 0.9658, 0.8543 and 0.8644 by 5-fold cross-validation respectively. Compared with the latest published models, our model shows better results. In addition, we predict the top 20 potential miRNAs for breast cancer and lung cancer, most of which are validated in the dbDEMC and HMDD3.2 databases. CONCLUSION: The comprehensive experimental results show that EOESGC can effectively identify the potential miRNA-disease associations.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , MicroRNAs , Algoritmos , Biologia Computacional , Feminino , Humanos , MicroRNAs/genética
5.
Comput Biol Chem ; 110: 108078, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677013

RESUMO

MicroRNAs (miRNAs) play a vital role in regulating gene expression and various biological processes. As a result, they have been identified as effective targets for small molecule (SM) drugs in disease treatment. Heterogeneous graph inference stands as a classical approach for predicting SM-miRNA associations, showcasing commendable convergence accuracy and speed. However, most existing methods do not adequately address the inherent sparsity in SM-miRNA association networks, and imprecise SM/miRNA similarity metrics reduce the accuracy of predicting SM-miRNA associations. In this research, we proposed a heterogeneous graph inference with range constrained L2,1-collaborative matrix factorization (HGIRCLMF) method to predict potential SM-miRNA associations. First, we computed the multi-source similarities of SM/miRNA and integrated these similarity information into a comprehensive SM/miRNA similarity. This step improved the accuracy of SM and miRNA similarity, ensuring reliability for the subsequent inference of the heterogeneity map. Second, we used a range constrained L2,1-collaborative matrix factorization (RCLMF) model to pre-populate the SM-miRNA association matrix with missing values. In this step, we developed a novel matrix decomposition method that enhances the robustness and formative nature of SM-miRNA edges between SM networks and miRNA networks. Next, we built a well-established SM-miRNA heterogeneous network utilizing the processed biological information. Finally, HGIRCLMF used this network data to infer unknown association pair scores. We implemented four cross-validation experiments on two distinct datasets, and HGIRCLMF acquired the highest areas under the curve, surpassing six state-of-the-art computational approaches. Furthermore, we performed three case studies to validate the predictive power of our method in practical application.


Assuntos
MicroRNAs , MicroRNAs/genética , Bibliotecas de Moléculas Pequenas/química , Biologia Computacional/métodos , Algoritmos , Humanos
6.
Chem Sci ; 15(11): 3971-3979, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38487230

RESUMO

Photo-responsive materials can convert light energy into mechanical energy, with great application potential in biomedicine, flexible electronic devices, and bionic systems. We combined reversible amide bonds, coordination site regulation, and coordination polymer (CP) self-assembly to synthesize two 1D photo-responsive CPs. Obvious photomechanical behavior was observed under UV irradiation. By combining the CPs with PVA, the mechanical stresses were amplified and macroscopic driving behavior was realized. In addition, two cyclobutane amide derivatives and a pair of cyclobutane carboxyl isomers were isolated through coordination bond destruction and amide bond hydrolysis. Therefore, photo-actuators and supramolecular synthesis in smart materials may serve as important clues.

7.
Int J Biol Macromol ; 261(Pt 2): 129789, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296127

RESUMO

Interactions between polysaccharides and ionic liquids (ILs) at the molecular level are essential to elucidate the dissolution and/or plasticization mechanism of polysaccharides. Herein, saccharide-based ILs (SILs) were synthesized, and cellulose membrane was soaked in different SILs to evaluate the interactions between SILs and cellulose macromolecules. The relevant results showed that the addition of SILs into cellulose can effectively reduce the intra- and/or inter-molecular hydrogen bonds of polysaccharides. Glucose-based IL showed the intensest supramolecular interactions with cellulose macromolecules compared to sucrose- and raffinose-based ILs. Two-dimensional correlation and perturbation-correlation moving window Fourier transform infrared techniques were for the first time used to reveal the dynamic variation of the supramolecular interactions between SILs and cellulose macromolecules. Except for the typical HO⋯H interactions of cellulose itself, stronger -Cl⋯HO hydrogen bonding interactions were detected in the specimen of SILs-modified cellulose membranes. Supramolecular interactions of -Cl⋯H, HO⋯H, C-Cl⋯H, and -C=O⋯H between SILs and cellulose macromolecules sequentially responded to the stimuli of temperature. This work provides a new perspective to understanding the interaction mechanism between polysaccharides and ILs, and an avenue to develop the next-generation ILs for dissolving or thermoplasticizing polysaccharide materials.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Imidazóis/química , Celulose/química , Polissacarídeos , Temperatura
8.
Complex Intell Systems ; : 1-13, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37361970

RESUMO

Medical image segmentation is crucial for the diagnosis and analysis of disease. Deep convolutional neural network methods have achieved great success in medical image segmentation. However, they are highly susceptible to noise interference during the propagation of the network, where weak noise can dramatically alter the network output. As the network deepens, it can face problems such as gradient explosion and vanishing. To improve the robustness and segmentation performance of the network, we propose a wavelet residual attention network (WRANet) for medical image segmentation. We replace the standard downsampling modules (e.g., maximum pooling and average pooling) in CNNs with discrete wavelet transform, decompose the features into low- and high-frequency components, and remove the high-frequency components to eliminate noise. At the same time, the problem of feature loss can be effectively addressed by introducing an attention mechanism. The combined experimental results show that our method can effectively perform aneurysm segmentation, achieving a Dice score of 78.99%, an IoU score of 68.96%, a precision of 85.21%, and a sensitivity score of 80.98%. In polyp segmentation, a Dice score of 88.89%, an IoU score of 81.74%, a precision rate of 91.32%, and a sensitivity score of 91.07% were achieved. Furthermore, our comparison with state-of-the-art techniques demonstrates the competitiveness of the WRANet network.

9.
IEEE J Biomed Health Inform ; 27(3): 1193-1204, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35030088

RESUMO

Four-chamber (FC) views are the primary ultrasound(US) images that cardiologists diagnose whether the fetus has congenital heart disease (CHD) in prenatal diagnosis and screening. FC views intuitively depict the developmental morphology of the fetal heart. Early diagnosis of fetal CHD has always been the focus and difficulty of prenatal screening. Furthermore, deep learning technology has achieved great success in medical image analysis. Hence, applying deep learning technology in the early screening of fetal CHD helps improve diagnostic accuracy. However, the lack of large-scale and high-quality fetal FC views brings incredible difficulties to deep learning models or cardiologists. Hence, we propose a Pseudo-Siamese Feature Fusion Generative Adversarial Network (PSFFGAN), synthesizing high-quality fetal FC views using FC sketch images. In addition, we propose a novel Triplet Generative Adversarial Loss Function (TGALF), which optimizes PSFFGAN to fully extract the cardiac anatomical structure information provided by FC sketch images to synthesize the corresponding fetal FC views with speckle noises, artifacts, and other ultrasonic characteristics. The experimental results show that the fetal FC views synthesized by our proposed PSFFGAN have the best objective evaluation values: SSIM of 0.4627, MS-SSIM of 0.6224, and FID of 83.92, respectively. More importantly, two professional cardiologists evaluate healthy FC views and CHD FC views synthesized by our PSFFGAN, giving a subjective score that the average qualified rate is 82% and 79%, respectively, which further proves the effectiveness of the PSFFGAN.


Assuntos
Cardiopatias Congênitas , Ultrassonografia Pré-Natal , Gravidez , Feminino , Humanos , Ultrassonografia Pré-Natal/métodos , Cardiopatias Congênitas/diagnóstico por imagem , Coração Fetal/diagnóstico por imagem , Diagnóstico Pré-Natal , Ecocardiografia/métodos
10.
IEEE J Biomed Health Inform ; 27(10): 4639-4648, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35759606

RESUMO

MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time. Although numerous biological experiments have identified multi-types of associations between miRNAs and diseases, existing computational methods are unable to sufficiently mine the knowledge in these associations to predict unknown associations. In this study, we innovatively propose a heterogeneous graph attention network model based on meta-subgraphs (MSHGANMDA) to predict the potential miRNA-disease associations. Firstly, we define five types of meta-subgraph from the known miRNA-disease associations. Then, we use meta-subgraph attention and meta-subgraph semantic attention to extract features of miRNA-disease pairs within and between these five meta-subgraphs, respectively. Finally, we apply a fully-connected layer (FCL) to predict the scores of unknown miRNA-disease associations and cross-entropy loss to train our model end-to-end. To evaluate the effectiveness of MSHGANMDA, we apply five-fold cross-validation to calculate the mean values of evaluation metrics Accuracy, Precision, Recall, and F1-score as 0.8595, 0.8601, 0.8596, and 0.8595, respectively. Experiments show that our model, which primarily utilizes multi-types of miRNA-disease association data, gets the greatest ROC-AUC value of 0.934 when compared to other state-of-the-art approaches. Furthermore, through case studies, we further confirm the effectiveness of MSHGANMDA in predicting unknown diseases.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , Biologia Computacional/métodos , Algoritmos
11.
Artigo em Inglês | MEDLINE | ID: mdl-37307176

RESUMO

There exists growing evidence that circRNAs are concerned with many complex diseases physiological processes and pathogenesis and may serve as critical therapeutic targets. Identifying disease-associated circRNAs through biological experiments is time-consuming, and designing an intelligent, precise calculation model is essential. Recently, many models based on graph technology have been proposed to predict circRNA-disease association. However, most existing methods only capture the neighborhood topology of the association network and ignore the complex semantic information. Therefore, we propose a Dual-view Edge and Topology Hybrid Attention model for predicting CircRNA-Disease Associations (DETHACDA), effectively capturing the neighborhood topology and various semantics of circRNA and disease nodes in a heterogeneous network. The 5-fold cross-validation experiments on circRNADisease indicate that the proposed DETHACDA achieves the area under receiver operating characteristic curve of 0.9882, better than four state-of-the-art calculation methods.

12.
Cells ; 12(8)2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-37190032

RESUMO

Exploring potential associations between small molecule drugs (SMs) and microRNAs (miRNAs) is significant for drug development and disease treatment. Since biological experiments are expensive and time-consuming, we propose a computational model based on accurate matrix completion for predicting potential SM-miRNA associations (AMCSMMA). Initially, a heterogeneous SM-miRNA network is constructed, and its adjacency matrix is taken as the target matrix. An optimization framework is then proposed to recover the target matrix with the missing values by minimizing its truncated nuclear norm, an accurate, robust, and efficient approximation to the rank function. Finally, we design an effective two-step iterative algorithm to solve the optimization problem and obtain the prediction scores. After determining the optimal parameters, we conduct four kinds of cross-validation experiments based on two datasets, and the results demonstrate that AMCSMMA is superior to the state-of-the-art methods. In addition, we implement another validation experiment, in which more evaluation metrics in addition to the AUC are introduced and finally achieve great results. In two types of case studies, a large number of SM-miRNA pairs with high predictive scores are confirmed by the published experimental literature. In summary, AMCSMMA has superior performance in predicting potential SM-miRNA associations, which can provide guidance for biological experiments and accelerate the discovery of new SM-miRNA associations.


Assuntos
MicroRNAs , MicroRNAs/genética , Biologia Computacional/métodos , Algoritmos , Desenvolvimento de Medicamentos
13.
Neural Netw ; 167: 104-117, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37647740

RESUMO

The implementation of robotic reinforcement learning is hampered by problems such as an unspecified reward function and high training costs. Many previous works have used cross-domain policy transfer to obtain the policy of the problem domain. However, these researches require paired and aligned dynamics trajectories or other interactions with the environment. We propose a cross-domain dynamics alignment framework for the problem domain policy acquisition that can transfer the policy trained in the source domain to the problem domain. Our framework aims to learn dynamics alignment across two domains that differ in agents' physical parameters (armature, rotation range, or torso mass) or agents' morphologies (limbs). Most importantly, we learn dynamics alignment between two domains using unpaired and unaligned dynamics trajectories. For these two scenarios, we propose a cross-physics-domain policy adaptation algorithm (CPD) and a cross-morphology-domain policy adaptation algorithm (CMD) based on our cross-domain dynamics alignment framework. In order to improve the performance of policy in the source domain so that a better policy can be transferred to the problem domain, we propose the Boltzmann TD3 (BTD3) algorithm. We conduct diverse experiments on agent continuous control domains to demonstrate the performance of our approaches. Experimental results show that our approaches can obtain better policies and higher rewards for the agents in the problem domains even when the dataset of the problem domain is small.


Assuntos
Algoritmos , Aprendizagem , Física , Políticas , Reforço Psicológico
14.
IEEE J Biomed Health Inform ; 26(10): 4814-4825, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34156957

RESUMO

Fetal congenital heart disease (CHD) is the most common type of fatal congenital malformation. Fetal four-chamber (FC) view is a significant and easily accessible ultrasound (US) image among fetal echocardiography images. Automatic detection of four fetal heart chambers considerably contributes to the early diagnosis of fetal CHD. Furthermore, robust and discriminative features are essential for detecting crucial visualizing medical images, especially fetal FC views. However, it is an incredibly challenging task due to several key factors, such as numerous speckles in US images, the fetal four chambers with small size and unfixed positions, and category confusion caused by the similarity of cardiac chambers. These factors hinder the process of capturing robust and discriminative features, hence destroying the fetal four chambers' precise detection. Therefore, we propose an intelligent feature learning detection system (FLDS) for FC views to detect the four chambers. A multistage residual hybrid attention module (MRHAM) presented in this paper is incorporated in the FLDS for learning powerful and robust features, helping FLDS accurately locate the four chambers in the fetal FC views. Extensive experiments demonstrate that our proposed FLDS outperforms the current state-of-the-art, including the precision of 0.919, the recall of 0.971, the F1 score of 0.944, the mAP of 0.953, and the frames per second (FPS) of 43. In addition, our proposed FLDS is also validated on other visualizing nature images such as the PASCAL VOC dataset, achieving a higher mAP of 0.878 while input size is 608 × 608.


Assuntos
Cardiopatias Congênitas , Compostos Orgânicos Voláteis , Ecocardiografia , Feminino , Coração Fetal/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Gravidez , Ultrassonografia Pré-Natal/métodos
15.
Artigo em Inglês | MEDLINE | ID: mdl-36318554

RESUMO

Echocardiography is essential for evaluating cardiac anatomy and function during early recognition and screening for congenital heart disease (CHD), a widespread and complex congenital malformation. However, fetal CHD recognition still faces many difficulties due to instinctive fetal movements, artifacts in ultrasound images, and distinctive fetal cardiac structures. These factors hinder capturing robust and discriminative representations from ultrasound images, resulting in CHD's low prenatal detection rate. Hence, we propose a multi-scale gated axial-transformer network (MSGATNet) to capture fetal four-chamber semantic information. Then, we propose a SPReCHD: four-chamber semantic parsing network for recognizing fetal CHD in the clinical treatment of the medical metaverse, integrating MSGATNet to segment and locate four-chamber arbitrary contours, further capturing distinguished representations for the fetal heart. Comprehensive experiments indicate that our SPReCHD is sufficient in recognizing fetal CHD, achieving a precision of 95.92%, a recall of 94%, an accuracy of 95%, and a F1 score of 94.95% on the test set, dramatically improving the fetal CHD's prenatal detection rate.

16.
Cells ; 11(24)2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36552748

RESUMO

MicroRNA (miRNA)-disease association (MDA) prediction is critical for disease prevention, diagnosis, and treatment. Traditional MDA wet experiments, on the other hand, are inefficient and costly.Therefore, we proposed a multi-layer collaborative unsupervised training base model called SGAEMDA (Stacked Graph Autoencoder-Based Prediction of Potential miRNA-Disease Associations). First, from the original miRNA and disease data, we defined two types of initial features: similarity features and association features. Second, stacked graph autoencoder is then used to learn unsupervised low-dimensional representations of meaningful higher-order similarity features, and we concatenate the association features with the learned low-dimensional representations to obtain the final miRNA-disease pair features. Finally, we used a multilayer perceptron (MLP) to predict scores for unknown miRNA-disease associations. SGAEMDA achieved a mean area under the ROC curve of 0.9585 and 0.9516 in 5-fold and 10-fold cross-validation, which is significantly higher than the other baseline methods. Furthermore, case studies have shown that SGAEMDA can accurately predict candidate miRNAs for brain, breast, colon, and kidney neoplasms.


Assuntos
MicroRNAs , MicroRNAs/genética , Algoritmos , Biologia Computacional/métodos , Redes Neurais de Computação , Curva ROC
17.
PLoS One ; 14(6): e0217647, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211791

RESUMO

Locating diseases precisely from medical images, like ultrasonic and CT images, have been one of the most challenging problems in medical image analysis. In recent years, the vigorous development of deep learning models have greatly improved the accuracy in disease location on medical images. However, there are few artificial intelligent methods for identifying cholelithiasis and classifying gallstones on CT images, since no open source CT images dataset of cholelithiasis and gallstones is available for training the models and verifying their performance. In this paper, we build up the first medical image dataset of cholelithiasis by collecting 223846 CT images with gallstone of 1369 patients. With these CT images, a neural network is trained to "pick up" CT images of high quality as training set, and then a novel Yolo neural network, named Yolov3-arch neural network, is proposed to identify cholelithiasis and classify gallstones on CT images. Identification and classification accuracies are obtained by 10-fold cross-validations. It is obtained that our Yolov3-arch model is with average accuracy 92.7% in identifying granular gallstones and average accuracy 80.3% in identifying muddy gallstones. This achieves 3.5% and 8% improvements in identifying granular and muddy gallstones to general Yolo v3 model, respectively. Also, the average cholelithiasis identifying accuracy is improved to 86.50% from 80.75%. Meanwhile, our method can reduce the misdiagnosis rate of negative samples by the object detection model.


Assuntos
Colelitíase/diagnóstico por imagem , Vesícula Biliar/diagnóstico por imagem , Cálculos Biliares/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Inteligência Artificial , Colelitíase/patologia , Aprendizado Profundo , Vesícula Biliar/fisiopatologia , Cálculos Biliares/patologia , Humanos , Fígado/diagnóstico por imagem , Fígado/patologia , Aprendizado de Máquina , Redes Neurais de Computação , Baço/diagnóstico por imagem , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA