Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343194

RESUMO

Plant-based proteins (PBPs), which are environmentally friendly and sustainable sources of nutrition, can address the emerging challenges facing the global food supply due to the rapidly increasing population. PBPs have received much attention in recent decades as a result of high nutritional values, good functional properties, and potential health effects. This review aims to summarize the nutritional, functional and digestive profiles of PBPs, the health effects of their hydrolysates, as well as processing methods to improve the digestibility of PBPs. The diversity of plant protein sources plays an important role in improving the PBPs quality. Several types of models such as in vitro (the static and semi-dynamic INFOGEST) and in silico models have been proposed and used in simulating the digestion of PBPs. Processing methods including germination, fermentation, thermal and non-thermal treatment can be applied to improve the digestibility of PBPs. PBPs and their hydrolysates show potential health effects including antioxidant, anti-inflammatory, anti-diabetic, anti-hypertensive and anti-cancer activities. Based on the literature, diverse PBPs are ideal protein sources, and exhibit favorable digestive properties and health benefits that could be further improved by different processing technologies. Future research should explore the molecular mechanisms underlying the bioactivity of PBPs and their hydrolysates.

2.
J Sci Food Agric ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961686

RESUMO

Hyacinth bean [Lablab purpureus (L.) Sweet], a plant belonging to the leguminous family and traditionally used for medicinal purposes in China, is a valuable resource with a wide range of health benefits. This review examines the bioactive compounds, health-promoting properties and functional food potential of hyacinth bean, highlighting its role in protecting against metabolic diseases and the underlying molecular mechanisms. According to existing research, hyacinth bean contains a diverse array of bioactive compounds, Consumption of hyacinth beans and hyacinth bean-related processed food products, as well as their use in medicines, is associated with a variety of health benefits that are increasingly favoured by the scientific community. In light of these findings, we posit that hyacinth bean holds great promise for further research and food application. © 2024 Society of Chemical Industry.

3.
BMC Plant Biol ; 22(1): 237, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538406

RESUMO

BACKGROUND: Quinoa (Chenopodium quinoa), a dicotyledonous species native to Andean region, is an emerging crop worldwide nowadays due to its high nutritional value and resistance to extreme abiotic stresses. Although it is well known that seed germination is an important and multiple physiological process, the network regulation of quinoa seed germination is largely unknown. RESULTS: Here, we performed transcriptomic study in five stages during transition from quinoa dry seed to seedling. Together with the GC-MS based metabolome analysis, we found that seed metabolism is reprogrammed with significant alteration of multiple phytohormones (especially abscisic acid) and other nutrients during the elongation of radicels. Cell-wall remodeling is another main active process happening in the early period of quinoa seed germination. Photosynthesis was fully activated at the final stage, promoting the biosynthesis of amino acids and protein to allow seedling growth. The multi-omics analysis revealed global changes in metabolic pathways and phenotype during quinoa seed germination. CONCLUSION: The transcriptomic and metabolomic landscape depicted here pave ways for further gene function elucidation and quinoa development in the future.


Assuntos
Chenopodium quinoa , Chenopodium quinoa/fisiologia , Germinação/genética , Plântula/genética , Plântula/metabolismo , Sementes , Transcriptoma
4.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339363

RESUMO

Lunasin is a soybean-derived peptide that exhibits anticancer bioactivity in different cancer cells and has been identified in different plants. However, recent studies revealed through molecular and chemical analyses that lunasin was absent in wheat and other cereals. In this study, the soybean-derived lunasin was cloned into pCAMBIA3300 and we transferred the expression vector into wheat via an Agrobacterium-mediated transformation. The identification of transgenic wheat was detected by polymerase chain reaction, Western blot analysis, and ultra-performance liquid chromatography with tandem mass spectrometry. An enzyme-linked immunosorbent assay showed that lunasin content in transgenic wheat L32-3, L32-6, and L33-1 was 308.63, 436.78, and 349.07 µg/g, respectively, while lunasin was not detected in wild-type wheat. Lunasin enrichment from transgenic wheat displayed an increased anti-proliferative activity compared with peptide enrichment from wild-type wheat in HT-29 cells. Moreover, the results of a real-time quantitative polymerase chain reaction showed a significant elevation in p21, Bax, and caspase-3 expression, while Bcl-2 was significantly downregulated. In conclusion, soybean-derived lunasin was successfully expressed in wheat via Agrobacterium-mediated transformation and may exert anti-proliferative activity by regulating the apoptosis pathway in HT-29 cells, which provides an effective approach to compensate for the absence of lunasin in wheat.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Soja/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HT29 , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Triticum/genética , Triticum/metabolismo
5.
Food Res Int ; 180: 114065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395582

RESUMO

Tartary buckwheat is rich in nutrients and its protein supports numerous biological functions. However, the digestibility of Tartary buckwheat protein (TBP) poses a significant limitation owing to its inherent structure. This study aimed to assess the impact of high moisture extrusion (HME, 60 % moisture content) on the structural and physicochemical attributes, as well as the in vitro digestibility of TBP. Our results indicated that TBP exhibited unfolded and amorphous microstructures after HME. The protein molecular weight of TBP decreased after HME, and a greater degradation was observed at 70 °C than 100 °C. In particular, HME at 70 °C caused an almost complete disappearance of bands near 35 kDa compared with HME at 100 °C. In addition, compared with native TBP (NTBP, 44.53 µmol/g protein), TBP subjected to HME at 70 °C showed a lower disulfide bond (SS) content (42.67 µmol/g protein), whereas TBP subjected to HME at 100 °C demonstrated a higher SS content (45.70 µmol/g protein). These changes endowed TBP with good solubility (from 55.96 % to 83.31 % at pH 7), foaming ability (20.00 %-28.57 %), and surface hydrophobicity (8.34-23.07). Furthermore, the emulsifying activity (EA) and in vitro digestibility are closely related to SS content. Notably, extruded TBP (ETBP) obtained at 70 °C exhibited higher EA and digestibility than NTBP, whereas ETBP obtained at 100 °C showed the opposite trend. Consequently, HME (especially at 70 °C) demonstrated significant potential as a processing technique for improving the functional and digestive properties of TBP.


Assuntos
Fagopyrum , Fagopyrum/química , Solubilidade , Digestão , Proteínas de Ligação ao GTP/metabolismo
6.
Int J Biol Macromol ; 267(Pt 1): 131488, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615862

RESUMO

This study aimed to reveal the underlying mechanisms of the differences in viscoelasticity and digestibility between mung bean starch (MBS) and proso millet starch (PMS) from the viewpoint of starch fine molecular structure. The contents of amylopectin B2 chains (14.94-15.09 %), amylopectin B3 chains (14.48-15.07 %) and amylose long chains (183.55-198.84) in MBS were significantly higher than PMS (10.45-10.76 %, 12.48-14.07 % and 70.59-88.03, respectively). MBS with higher amylose content (AC, 28.45-31.80 %) not only exhibited a lower weight-average molar mass (91,750.65-128,120.44 kDa) and R1047/1022 (1.1520-1.1904), but also was significantly lower than PMS in relative crystallinity (15.22-23.18 %, p < 0.05). MBS displayed a higher storage modulus (G') and loss modulus (G'') than PMS. Although only MBS-1 showed two distinct and discontinuous phases, MBS exhibited a higher resistant starch (RS) content than PMS (31.63-39.23 %), with MBS-3 having the highest RS content (56.15 %). Correlation analysis suggested that the amylopectin chain length distributions and AC played an important role in affecting the crystal structure, viscoelastic properties and in vitro starch digestibility of MBS and PMS. These results will provide a theoretical and scientific basis for the development of starch science and industrial production of low glycemic index starchy food.


Assuntos
Amilopectina , Amilose , Panicum , Amido , Vigna , Amilopectina/análise , Amilose/análise , Vigna/química , Amido/química , Panicum/química , Pepsina A/metabolismo , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Peso Molecular , Cinética
7.
Food Res Int ; 189: 114563, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876595

RESUMO

The digestibility of ungelatinized, short-term retrograded and long-term retrograded starch from foxtail millet was investigated and correlated with starch chain length distributions (CLDs). Some variations in starch CLDs of different varieties were obtained. Huangjingu and Zhonggu 9 had higher average chain lengths of debranched starch and lower average chain length ratios of amylopectin and amylose than Dajinmiao and Jigu 168. Compared to ungelatinized starch, retrogradation significantly increased the estimated glycemic index (eGI), whereas significantly decreased the resistant starch (RS). In contrast, long-term retrograded starches have lower eGI (93.33-97.37) and higher RS (8.04-14.55%) than short-term retrograded starch. PCA and correlation analysis showed that amylopectin with higher amounts of long chains and longer long chains contributed to reduced digestibility in ungelatinized starch. Both amylose and amylopectin CLDs were important for the digestibility of retrograded starch. This study helps a better understanding of the interaction of starch CLDs and digestibility during retrogradation.


Assuntos
Amilopectina , Amilose , Digestão , Setaria (Planta) , Amido , Setaria (Planta)/química , Setaria (Planta)/metabolismo , Amido/química , Amido/metabolismo , Amilopectina/química , Amilose/química , Índice Glicêmico
8.
Food Chem X ; 22: 101407, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38711773

RESUMO

Radish (Raphanus sativus L.) undergoes texture changes in their phy-chemical properties during the long-term dry-salting process. In our study, we found that during the 60-day salting period, the hardness and crispness of radish decreased significantly. In further investigation, we observed that the collaborative action of pectin methylesterase (PME) and polygalacturonase (PG) significantly decreased the total pectin, alkali-soluble pectin (ASP), and chelator-soluble pectin (CSP) content, while increasing the water-soluble pectin (WSP) content. Furthermore, the elevated activities of cellulase and hemicellulase directly led to the notable fragmentation of cellulose and hemicellulose. The above reactions jointly induced the depolymerization and degradation of cell wall polysaccharides, resulting in an enlargement of intercellular spaces and shrinkage of the cell wall, which ultimately led to a reduction in the hardness and crispness of the salted radish. This study provided key insights and guidance for better maintaining textural properties during the dry-salting process of radish.

9.
Food Chem ; 457: 140104, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38941905

RESUMO

Starch chain-length distributions play a key role in regulating the processing and digestion characteristics of proso millet starch. Waxy proso millet starch has higher endothermic enthalpy (13.06-16.73 J/g) owing to its higher relative crystallinity (27.83%-32.04%), while nonwaxy proso millet starch has lower peak viscosity (1.0630-1.1930 Pa∙s) and stronger viscoelasticity owing to its higher amylose content (21.72%-24.34%). Non-waxy proso millet starch exhibited two different digestion phases and its resistant starch content (18.37%-20.80%) was higher than waxy proso millet starch. Correlation analysis showed proso millet starch with longer amylopectin B1 chains and more amylopectin B2 chains exhibited excellent thermal ability and retrograde resistance, whereas proso millet starch with shorter and more amylose medium/long-chains not only reduced the digestion rate and increased the resistant starch content but also exhibited stronger viscoelasticity and excellent retrogradation properties. These results could provide more insights into efficient utilization of proso millet starch.

10.
Food Res Int ; 181: 114108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448108

RESUMO

Quinoa (Chenopodium quinoa Willd.) microgreens are widely consumed as healthy vegetables around the world. Although soluble dietary fibers exist as the major bioactive macromolecules in quinoa microgreens, their structural characteristics and bioactive properties are still unclear. Therefore, the structural characteristics and bioactive properties of soluble dietary fibers from various quinoa microgreens (QMSDFs) were investigated in this study. The yields of QMSDFs ranged from 38.82 to 52.31 mg/g. Indeed, all QMSDFs were predominantly consisted of complex pectic-polysaccharides, e.g., homogalacturonan (HG) and rhamnogalacturonan I (RG I) pectic domains, with the molecular weights ranged from 2.405 × 104 to 5.538 × 104 Da. In addition, the proportions between RG I and HG pectic domains in all QMSDFs were estimated in the range of 1: 2.34-1: 4.73 (ratio of galacturonic acid/rhamnose). Furthermore, all QMSDFs exhibited marked in vitro antioxidant, antiglycation, prebiotic, and immunoregulatory effects, which may be partially correlated to their low molecular weights and low esterification degrees. These findings are helpful for revealing the structural and biological properties of QMSDFs, which can offer some new insights into further development of quinoa microgreens and related QMSDFs as value-added healthy products.


Assuntos
Chenopodium quinoa , Antioxidantes , Esterificação , Nível de Saúde , Prebióticos
11.
Food Chem ; 410: 135290, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608550

RESUMO

Quinoa is one of the gluten-free crops that has attracted considerable interest. Quinoa contains functional ingredients such as bioactive peptides, polysaccharides, saponins, polyphenols, flavonoids and other compounds. It is very important to determine efficient methods to identify such functional ingredients, and to explain their possible health benefits in humans. In this review, the chemical structure and biological activity mechanisms of quinoa nutrient composition have been elaborated. In addition, the development of quinoa-based functional foods and feed is emerging, providing a reference for the development of functional products with quinoa as an ingredient that are beneficial to health. The active ingredients in quinoa have different health effects including antioxidant, antidiabetic, antihypertensive, anti-inflammatory, and anti-obesity activities. Further exploration is also needed to improve the application of quinoa within the functional food industry, and in the areas of feed, medicine and cosmetics.


Assuntos
Chenopodium quinoa , Humanos , Chenopodium quinoa/química , Nutrientes , Polifenóis , Antioxidantes/química , Flavonoides
12.
Food Chem ; 399: 133976, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998497

RESUMO

The effect of adding native or germinated quinoa flour to wheat flour on gluten structure, starch digestibility and quality properties in pasta was evaluated. The free sulfhydryl contents in wheat/quinoa dough (1.41-3.16 µmol/g) were higher than the wheat dough content (0.764 µmol/g). The gluten network was gradually disrupted as additions of quinoa increased, resulting in improved starch digestibility. Further, germinated quinoa showed greater disruption and starch digestibility effects than native quinoa. Although the cooking quality of pasta decreased with additions of quinoa, cooking losses were below 7 %, which is acceptable. Adding excess germinated quinoa (30 %) had negative impacts on the textural properties. The sensory quality of pasta with 10-20 % native or germinated quinoa (24 h) flour (QF24) was acceptable. These findings suggested that a recipe of 20 % QF24 in wheat flour is recommended to develop wheat/germinated quinoa pasta with improved digestibility and acceptable changes in qualities.


Assuntos
Chenopodium quinoa , Farinha , Chenopodium quinoa/química , Culinária/métodos , Farinha/análise , Glutens/química , Amido/química , Triticum/química
13.
Carbohydr Polym ; 320: 121240, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659823

RESUMO

Starch chain-length distributions play an important role in controlling cereal product texture and starch physicochemical properties. Cooked foxtail millet texture and starch physicochemical properties were investigated and correlated with starch chain-length distributions in eight foxtail millet varieties. The average chain lengths of amylopectin and amylose were in the range of DP 24-25 and DP 878-1128, respectively. The percentage of short amylopectin chains (Ap1) was negatively correlated with hardness but positively correlated with adhesiveness and cohesion. Conversely, the amount of amylose intermediate chains was positively correlated with hardness but negatively correlated with adhesiveness and cohesion. Additionally, the amount of amylose long chains was negatively correlated with adhesiveness and chewiness. The relative crystallinity (RC) of starch decreased with reductions in the length of amylopectin short chains in foxtail millet. Pasting properties were mainly influenced by the relative length of amylopectin side chains and the percentage of long amylopectin branches (Ap2). Longer amylopectin long chains resulted in lower gelatinization temperature and enthalpy (ΔH). The amount of starch branched chains had important effects on the gelatinization temperature range (ΔT). These results can provide guidance for breeders and food scientists in the selection of foxtail millet with improved quality properties.


Assuntos
Setaria (Planta) , Amido , Amilopectina , Amilose , Grão Comestível
14.
Food Chem ; 408: 135196, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535178

RESUMO

Quinoa protein hydrolysate has been previously reported to exert anti-cancer effects in cultured colon cancer cells. Here, we investigated the effect of quinoa protein and its hydrolysate on an azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mouse model of colorectal cancer (CRC) and examined its underlying mechanism using gut microbiota analysis and short chain fatty acids (SCFAs) production analysis. Our results showed that quinoa protein or its hydrolysate mitigated the clinical symptoms of CRC and increased SCFAs contents in colon tissues. Moreover, administration of quinoa protein or its hydrolysate partially alleviated gut microbiota dysbiosis in CRC mice by decreasing the abundance of pathogenic bacteria and increasing the abundance of probiotics. Additionally, PICRUSt analysis revealed that the functional profile of gut microbiota in the quinoa protein treated groups was more similar to that of the control group. These findings indicated that the modulation of gut microbiota by quinoa protein diet intervention may ameliorate AOM/DSS-induced CRC.


Assuntos
Chenopodium quinoa , Colite , Neoplasias Colorretais , Microbioma Gastrointestinal , Probióticos , Animais , Camundongos , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Azoximetano/efeitos adversos , Sulfato de Dextrana , Peptídeos/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente
15.
Front Nutr ; 10: 1113327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025611

RESUMO

Introduction: Tartary buckwheat and adzuki bean, which are classified as coarse grain, has attracted increasing attention as potential functional ingredient or food source because of their high levels of bioactive components and various health benefits. Methods: This work investigated the effect of two different extrusion modes including individual extrusion and mixing extrusion on the phytochemical compositions, physicochemical properties and in vitro starch digestibility of instant powder which consists mainly of Tartary buckwheat and adzuki bean flour. Results: Compared to mixing extrusion, instant powder obtained with individual extrusion retained higher levels of protein, resistant starch, polyphenols, flavonoids and lower gelatinization degree and estimated glycemic index. The α-glucosidase inhibitory activity (35.45%) of the instant powder obtained with individual extrusion was stronger than that obtained with mixing extrusion (26.58%). Lower levels of digestibility (39.65%) and slower digestion rate coefficient (0.25 min-1) were observed in the instant powder obtained with individual extrusion than in mixing extrusion (50.40%, 0.40 min-1) by logarithm-of-slope analysis. Moreover, two extrusion modes had no significant impact on the sensory quality of instant powder. Correlation analysis showed that the flavonoids were significantly correlated with physicochemical properties and starch digestibility of the instant powder. Discussion: These findings suggest that the instant powder obtained with individual extrusion could be used as an ideal functional food resource with anti-diabetic potential.

16.
Front Nutr ; 9: 1052730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438721

RESUMO

This work investigated the phytochemical properties and health benefits of Tartary buckwheat flour obtained with different extrusion conditions including high, medium, and low temperature. Extrusion significantly decreased the fat content and changed the original color of Tartary buckwheat flour. The contents of protein, total flavonoids, and D-chiro-inositol were affected by the extrusion temperature and moisture. Extrusion significantly decreased the total flavonoids and flavonoid glycosides contents, while it significantly increased aglycones. Compared to native Tartary buckwheat flour and pregelatinization Tartary buckwheat flour obtained with traditional extrusion processing technology, the pregelatinization Tartary buckwheat flour obtained with improved extrusion processing technology contained higher aglycones and lower flavonoid glycosides, which had stronger antioxidant capacity, α-glucosidase inhibitory activity and relatively mild α-amylase inhibitory activity. Correlation analysis proved that the aglycone content was positively correlated with antioxidant and α-glucosidase inhibitory activities. These findings indicate that the pregelatinization Tartary buckwheat flour obtained with improved extrusion processing technology could be used as an ideal functional food resource with antioxidant and anti-diabetic potential.

17.
Food Chem ; 348: 129086, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33508608

RESUMO

Aroma is an important feature of quinoa that influences consumer preferences. Differently coloured quinoa seeds exhibit diverse nutritional characteristics; however, their aromatic profile differences are poorly investigated. The volatile components of 11 quinoa samples were characterized by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). A total of 120 peaks were detected, with 61 compounds identified. White quinoa liberated a high concentration of volatiles with grass (n-hexanol) and green ((E)-2-octenal, (E)-2-heptenal, etc.) aromas before and after cooking, respectively. Raw flaxen samples uniquely released a caramel compound (cyclotene) and exhibited several sweet and caramel volatiles (decanal, 5-methyl-furfural, and 2-furfural) after cooking. Additionally, cooked black quinoa exerted more fruity substances (methyl hexanoate and phenylacetaldehyde). Orthogonal partial least square discriminant analysis clearly distinguished the samples before and after cooking and differentiated the seeds into different colours. The results confirm the potential of HS-GC-IMS to evaluate volatiles in quinoa and are meaningful for quinoa consumption.


Assuntos
Chenopodium quinoa/química , Culinária , Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Compostos Orgânicos Voláteis/análise , Comportamento do Consumidor , Frutas/química , Odorantes/análise , Sementes/química , Paladar
18.
J Agric Food Chem ; 68(42): 11702-11709, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32869636

RESUMO

In this study, protein was extracted from extruded lupin and submitted to gastroduodenal digests to obtain lupin peptides, which were characterized using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). After this, IQDKEGIPPDQQR (IQD), the lupine peptide monomer characterized after UPLC-MS/MS, was screened out by macrophage inflammatory cytokine production assay. RNA-sequencing analysis was performed to explore the mechanisms underlying the anti-inflammatory activity associated with this peptide. The results indicated that lupin peptides effectively inhibited the lipopolysaccharide-induced overproduction of proinflammatory mediators. IQD inhibited the production of tumor necrosis factor-α, interleukin (IL)-6, IL-1ß, and monocyte chemoattractant protein-1 by 51.20, 38.52, 44.70, and 40.43%, respectively. RNA-sequencing results showed that IQD inhibited the inflammatory response by regulating the gene expression of the p38 mitogen-activated protein kinase pathway and inhibiting downstream inflammatory cytokines. These bioactive peptides may be used to develop new ingredients for anti-inflammatory nutritional supplements.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/imunologia , Lupinus/química , Macrófagos/efeitos dos fármacos , Peptídeos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Inflamação/genética , Macrófagos/imunologia , Camundongos , Proteínas de Plantas/química , Células RAW 264.7 , Sementes/química , Espectrometria de Massas em Tandem , Proteínas Quinases p38 Ativadas por Mitógeno/genética
19.
Food Sci Nutr ; 8(8): 4232-4241, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884704

RESUMO

This study aimed to evaluate the bio-accessibility of the phenolics and flavonoid, the polyphenolic profile and the antioxidant activity of sprouts obtained from four different quinoa genotypes and one djulis cultivar during in vitro gastrointestinal digestion. Compared to their content in sprouts, the bioavailable phenolics after the oral phase, the gastric phase, the intestinal phase, and in the dialyzable fraction were in the ranges of 45.7%-63.5%, 87.6%-116.7%, 89.6%-124.5%, and 7.4%-10.9%, respectively. The trend in flavonoid bio-accessibility was similar to the polyphenols. The dialyzable flavonoid recoveries varied between 4.2% and 12.4%. Correspondingly, the free radical scavenging activity of the dialyzable phase decreased significantly from 84.7% to 96.5%. The main phenolic acids were vanillic acid, caffeic acid, and syringic acid during digestion. The results suggest that gastrointestinal digestion greatly affected the absorption of polyphenols and flavonoid of quinoa and djulis sprouts, as well as their antioxidant capacity.

20.
Plant Physiol Biochem ; 151: 443-456, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32289638

RESUMO

Chenopodium quinoa, a halophytic crop belonging to the Amaranthaceae, has remarkable resistance to harsh growth conditions and produces seed with excellent nutritional value. This makes it a suitable crop for marginal soils. However, to date most of the commercial cultivars are susceptible to preharvest sprouting (PHS). Meanwhile, understanding of the PHS regulatory mechanisms is still limited. Abscisic acid (ABA) has been demonstrated to be tightly associated with seed dormancy and germination regulation in many crops. Whether ABA metabolism pathway could be manipulated to prevent PHS in quinoa is worth investigating. In the present study, we tested the inhibitory effects of exogenous ABA on quinoa seed germination. By RNA-seq analysis we investigated the global gene expression changes during seed germination, and obtained 1066 ABA-repressed and 392 ABA-induced genes. Cis-elements enrichment analysis indicated that the promoters of these genes were highly enriched in motifs "AAAAAAAA" and "ACGTGKC (K = G/T)", the specific binding motifs of ABI3/VP1 and ABI5. Transcription factor annotation showed that 13 genes in bHLH, MADS-box, G2-like and NF-YB, and five genes in B3, bZIP, GATA and LBD families were specifically ABA-repressed and -induced, respectively. Furthermore, expression levels of 53 key homologs involved in seed dormancy and germination regulation were markedly changed. Hence, we speculated that the 18 transcription factors and the homologs were potential candidates involved in ABA-mediated seed dormancy and germination regulation, which could be manipulated for molecular breeding of quinoa elites with PHS tolerance in future.


Assuntos
Chenopodium quinoa , Perfilação da Expressão Gênica , Germinação , Dormência de Plantas , Sementes , Fatores de Transcrição , Ácido Abscísico/farmacologia , Chenopodium quinoa/genética , Chenopodium quinoa/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Germinação/genética , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/farmacologia , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA