Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(15): 3741-3750, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38530281

RESUMO

Oncolytic virus ablation of tumor cells has the advantages of high tumor selectivity, strong immunogenicity, and low side effects. However, the recognition and clearance of oncolytic viruses by the immune system are the main factors limiting their anti-tumor efficiency. As a highly biosafe and highly modifiable oncolytic virus vector, acrylamide can improve the long-term circulation of oncolytic viruses. Still, it is limited in its uptake efficiency by tumor cells. Herein, we constructed an N-hydroxymethyl acrylamide-b-(N-3-aminopropyl methacrylamide)-b-DMC block copolymer (NMA-b-APMA-b-DMA, NAD) as an oncolytic virus carrier, which not only improves the long-term circulation of oncolytic viruses in the body but also shows excellent stability for loading an oncolytic virus. The data shows that there was no obvious difference in the transfection effect of the NAD/Ad complex with or without neutralizing antibodies in the medium, which meant that the cationic carrier mediated by NAD/Ad had good serum stability. Only 10 micrograms of NAD carrier are needed to load the oncolytic virus, which can increase the transfection efficiency by 50 times. Cell experiments and mouse animal experiments show that NAD vectors can significantly enhance the anti-tumor effect of oncolytic viruses. We hope that this work will promote the application of acrylamide as an oncolytic virus vector and provide new ideas for methods to modify acrylamide for biomedical applications.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Camundongos , Metionina , Acrilamida , Polímeros , NAD , Acrilamidas , Neoplasias/tratamento farmacológico , Racemetionina
2.
ACS Nano ; 18(14): 9871-9885, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38545939

RESUMO

As an ideal drug carrier, it should possess high drug loading and encapsulation efficiency and precise drug targeting release. Herein, we utilized a template-guided self-weaving technology of phase-separated silk fibroin (SF) in reverse microemulsion (RME) to fabricate a kind of hyaluronic acid (HA) coated SF nanocage (HA-gNCs) for drug delivery of cancer immunotherapy. Due to the hollow structure, HA-gNCs were capable of simultaneous encapsulation of the anti-inflammatory drug betamethasone phosphate (BetP) and the immune checkpoint blockade (ICB) agent PD-L1 antibody (αPD-L1) efficiently. Another point worth noting was that the thiocarbonate cross-linkers used to strengthen the SF shell of HA-gNCs could be quickly broken by overexpressed glutathione (GSH) to reach responsive drug release inside tumor tissues accompanied by hydrogen sulfide (H2S) production in one step. The synergistic effect of released BetP and generated H2S guaranteed chronological modulation of the immunosuppressive tumor microenvironment (ITME) to amplify the therapeutic effect of αPD-L1 for the growth, metastasis, and recurrence of tumors. This study highlighted the exceptional prospect of HA-gNCs as a self-assistance platform for cancer drug delivery.


Assuntos
Antineoplásicos , Sulfeto de Hidrogênio , Nanopartículas , Neoplasias , Humanos , Sulfeto de Hidrogênio/uso terapêutico , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Glutationa , Imunoterapia , Microambiente Tumoral , Linhagem Celular Tumoral , Nanopartículas/química
3.
Adv Mater ; 35(42): e2303718, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625141

RESUMO

Developing a drug delivery platform that possesses universal drug loading capacity to meet various requirements of cancer treatment is a challenging yet interesting task. Herein, a self-assembled gelatin/silk fibroin composite (GSC) particle based drug delivery system is developed via microphase separation followed by desolvation process. Thanks to its preassembled microphase stage, this GSC system is suitable for varying types of drugs. The desolvation process fix drugs inside GSC rapidly and densify the GSC structure, thereby achieving efficient drug loading and providing comprehensive protection for loaded drugs. Actually, the size of this brand-new non-pore dependent drug delivery system can be easily adjusted from 100 nm to 20 µm to fit different scenarios. This work selects GSC with 3 µm diameter as the universal inhaled drug delivery platform, which shows an excellent transmucosal penetration and lung retention ability. Additionally, the MMP-9 sensitive degradation property of GSC enhances the targeted efficiency of drugs and reduces side effects. Intestinally, GSC can self-amplify the regulation of innate immunity to reverse the cancerous microenvironment into an antitumor niche, significantly improving the therapeutic effect of drugs. This study of GSC universal drug platform provides a new direction to develop the next-generation of drug delivery system for lung cancer.


Assuntos
Fibroínas , Neoplasias Pulmonares , Humanos , Fibroínas/química , Gelatina/química , Metaloproteinase 9 da Matriz , Neoplasias Pulmonares/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Microambiente Tumoral
4.
J Mater Chem B ; 9(42): 8882-8896, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34693959

RESUMO

The combination of chemodynamic and photothermal materials can not only improve the therapeutic effect of chemodynamic therapy (CDT) by thermal stimulation, but also play a synergistic therapeutic role. Benefitting from the strong near-infrared absorption ability, copper sulfide (CuS) nanomaterials are widely used in photothermal therapy. However, due to the harsh preparation conditions, low photothermal efficiency and poor biocompatibility, further biomedical application is limited. In this work, silver-doped copper sulfide nanoparticles (BSA-Ag:CuS) were synthesized using a biomineralization strategy using bovine serum albumin (BSA) as a template and stabilizer. Silver doping greatly improved the near-infrared absorption and photothermal efficiency of CuS nanoparticles, which can be used for 1064 nm laser-guided photothermal therapy (PTT). Meanwhile, BSA-Ag:CuS nanoparticles had a synergistic therapeutic effect with CDT and thus showed excellent antitumor performance. In vivo and in vitro biological experiments have shown that BSA-Ag:CuS nanoparticles have good stability, low toxicity, good biocompatibility and strong antitumor ability, and are promising as antitumor agents for future clinical cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Cobre/farmacologia , Desenvolvimento de Medicamentos , Nanopartículas/química , Terapia Fototérmica , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Feminino , Hemólise/efeitos dos fármacos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C
5.
J Mater Chem B ; 9(48): 9908-9922, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34842266

RESUMO

Lenvatinib (LT) is gradually replacing sorafenib as an alternative targeted drug against advanced hepatocellular carcinoma (HCC). However, the anticancer effects of LT are still limited because of its low cytotoxicity, multidrug resistance (MDR), and tumor relapse. Herein, we constructed a smart biophotonic nanoplatform to overcome the barriers preventing high performance. LT and copper sulfide nanocrystals (Cu2-xS NCs) with excellent photothermal properties in the near-infrared-II (NIR-II) zone were co-encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) through nanoprecipitation. Both in vitro and in vivo evaluations demonstrated that Cu2-xS NCs enhanced the anticancer efficacy of LT, without recurrence. In addition, the presence of copper ions could allow glutathione (GHS) to be consumed and oxygen to be produced, likely suppressing the expression of P-glycoprotein (P-gp) and overcoming the issue of MDR relating to LT. More importantly, synergistic chemo-photothermal therapy with LT and Cu2-xS NCs was more effective than any single therapy or theoretical combination. This nanoplatform is promising for advancing future LT-based treatment strategies for HCC therapy.


Assuntos
Antineoplásicos/farmacologia , Materiais Biocompatíveis/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Terapia Fototérmica , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Cápsulas/química , Cápsulas/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Masculino , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Sulfetos/química , Sulfetos/farmacologia , Células Tumorais Cultivadas
6.
Mol Med Rep ; 19(5): 4433-4440, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30942454

RESUMO

MicroRNAs (miRNAs) are post­transcriptional regulators that mediate the initiation and progression of human cancer. Growing evidence suggests that deregulation of miRNA expression levels underlies chemo­resistance. To investigate whether miRNA­302a (miR­302a) is involved in mediating chemo­resistance to paclitaxel in prostate cancer, a series of in vitro analyses were performed in paclitaxel­resistant prostate cancer PC­3PR cells and non­resistant prostate cancer PC­3 cells. It was demonstrated that the expression of miR­302a was upregulated in PC­3PR cells. Notably, ectopic expression of miR­302a also increased resistance to paclitaxel in wild­type PC­3 cells. By contrast, silencing of miR­302a in PC­3PR cells sensitized the cells to paclitaxel. Gene and protein expression analyses suggested that the miR­302a target gene breast cancer resistance protein (BCRP) may mediate chemo­resistance to paclitaxel in PC­3PR cells. In conclusion, the data suggested that elevated miR­302a levels, in part, mediate sensitivity to paclitaxel in prostate cancer through the aberrant regulation of its downstream targets, AOF2, BCRP and permeability glycoprotein 1. These data have implications for the development of novel therapeutics in prostate cancer that may improve sensitivity to chemotherapeutics.


Assuntos
Resistencia a Medicamentos Antineoplásicos , MicroRNAs/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/química , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antagomirs/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Histona Desmetilases/química , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Paclitaxel/farmacologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Regulação para Cima
7.
Onco Targets Ther ; 11: 5621-5630, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254455

RESUMO

BACKGROUND: Sonodynamic therapy (SDT) is an emerging tumor-inhibiting method that has gained attention in cancer therapy in the last several years. Although autophagy has been observed in SDT-treated cancer cells, its role and mechanism of action remain unclear. This study aimed to investigate the effects of low-frequency ultrasound on autophagy and drug-resistance of paclitaxel (PTX)-resistant PC-3 cells via the endoplasmic reticulum stress (ERs)-mediated PI3K/AT/mTOR signaling pathway. METHODS: CCK-8 assay was conducted to select the appropriate exposure time for PTX-resistant PC-3 cells under low-frequency ultrasound. PTX-resistant PC-3 cells were divided into a control group, PTX group, ultrasound group, ultrasound + PTX group, ultrasound + PTX + autophagy-related gene 5 (Atg5) siRNA group, and ultrasound + 4-PBA (an ERs inhibitor) group. Autophagy was observed by transmission electron microscopy (TEM) and fluorescence microscopy. Cell proliferation was evaluated using CCK-8 assay; apoptosis was detected by flow cytometry. Expression of multiple drug-resistance genes was detected by qRT-PCR. Western blotting was used to detect the expression of ERS-related proteins, autophagy-related proteins, apoptosis-related proteins, and PI3K/AKT/mTOR pathway-related proteins. RESULTS: Ten-second exposure was selected as optimal for all experiments. Compared to the PTX group, the level of autophagy, inhibition rate, apoptosis rate, and expression of ERS-related proteins (GRP78) increased, whereas the expression of multiple drug-resistance genes (MRP3, MRP7, and P-glycoprotein), PI3K/AKT/mTOR pathway-related proteins (PI3K, p-AKT, mTORC1), and apoptosis-related proteins (Bcl-2, NF-κB) decreased in PTX-resistant PC-3 cells after low-frequency ultrasound and PTX treatment for 24 h. These trends were more obvious after treatment with Atg5 siRNA, excluding the autophagy level. Post 4-PBA-treatment, the expression of GRP78 and LC3II proteins decreased, whereas that of PI3K, p-AKT, and mTORC1 increased. CONCLUSION: Results indicated that ultrasound induces autophagy by ERs-mediated PI3K/AKT/mTOR signaling pathway in PTX-resistant PC-3 cells; this autophagy acts as a cytoprotector during low-frequency ultrasound-mediated reversal of drug resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA