Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 199: 111318, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34019897

RESUMO

Organophosphate flame retardants (OPFRs) in both of water and sludge phase of influent and effluent of the STP were investigated in Beijing of China in five seasons. Total OPFRs concentrations in water phase of influent in five seasons were between 600 and 838 ng/L, where total OPFRs concentration was the lowest in summer of 2018. In water phase of influent and effluent, two chlorinated OPFRs (TCEP and TCPP) were major. Alkyl OPFRs decreased the most in water phase from influent to effluent. In sludge phase, the OPFRs amounts in winter were the lowest. The main OPFRs in sludge phase were TEHP and EHDP, which can be explained by the two OPFRs properties (log Kow and log Koc). Higher the values of the log Kow and log Koc of OPFRs, more amounts in sludge phase. The mass flow of OPFRs in influent were analysed by Principal Component Analysis (PCA), indicating that the influent amounts of TCEP, TDCP, TCPP and DCP were main OPFRs in four seasons to influence the characteristics of influent. Compared to OPFRs reduction in some STPs in other countries, alkyl and aryl OPFRs reduction rates were higher than chlorinated OPFRs. TBEP, TEHP and TPHP can always be effectively removed in different seasons and different STPs. The analysis methods of Pearson correlation and linear correlation were processed to check the possible factors affecting OPFRs reduction in STP. OPFRs reduction was related to some STP working parameters. Significant correlation also was found between OPFRs properties and reduction.


Assuntos
Retardadores de Chama , Purificação da Água , Pequim , China , Organofosfatos , Compostos Organofosforados , Estações do Ano
2.
J Hazard Mater ; 424(Pt A): 127288, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592594

RESUMO

It is crucial to deeply understand the fate and removal mechanism of various organophosphate flame retardants (PFRs) in specified wastewater treatment processes. However, concentration fluctuation and matrix effect in wastewater challenge quantification of PFR flux for both field observation and model validation. We present measured seasonal distribution profiles of time-weighted average (TWA) concentrations by in situ hydrophobic and polar passive samplers and modeled mass transport and transformation by means of fugacity for 11 PFRs with varied structures in an anaerobic-anoxic-oxic (A-A-O) municipal wastewater treatment system, and provided a systematic approach to characterize fate and removal mechanism of PFRs in major compartments via various treatment processes. We find evidence that PFRs have a unique structural-dependent fate and removal in the A-A-O system. Hydrophilic chlorinated-PFRs present persistent in all major compartments and dominate in effluents with significant variations; alkyl-PFRs are majorly reduced by biodegradation; whereas hydrophobic aryl-PFRs have the highest removal percentage, contributed by both sorption on solids and biotransformation. Sensitive analysis shows the most influential operation parameters on removal efficiency varied among the PFRs with different properties. We also conclude passive sampling can be effectively applied to estimate TWA wastewater concentrations and to validate fugacity model prediction.


Assuntos
Retardadores de Chama , Purificação da Água , Anaerobiose , Monitoramento Ambiental , Retardadores de Chama/análise , Organofosfatos
3.
Chemosphere ; 256: 126895, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32460157

RESUMO

The appearance of an increased amount of organophosphate flame retardant (OPFRs) in natural water is related the treated effluents from wastewater treatment plants (WWTPs) and thus understanding the OPFRs concentration and reduction variation in WWTPs would provide valuable insight into OPFR management and reduction. In this study, we have analyzed OPFRs (10 kinds: tris(chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCPP), tris(1,3-dichloropropyl) phosphate (TDCP), tris(phenyl) phosphate (TPhP), tris(2-ethylhexyl) phosphate (TEHP), diphenylcresylphosphate (DCP), tris(methylphenyl) phosphate (TCP), tris(2-butoxyethyl) phosphate (TBEP), 2-ethylhexyl diphenyl phosphate (EHDP), and tris(butyl) phosphate (TBP)) in both water and sludge samples collected from different phases of a WWTP upgrading. The results show that TCPP and TCEP were mainly present in the aqueous phase, whereas TEHP dominated in the solid phase. The overall OPFR reduction efficiencies were above 40% through whole treatment processes by all the phases. More OPFRs reduction efficiency in primary sedimentation tanks was higher mainly because of bigger tank volume. The anaerobic zone in all cases could decrease OPFRs by over 13%. The removal of OPFRs in the oxic zone highly varied under the influence of the aeration pipe, water temperature, and aeration amount. Compared with chlorinated OPFRs, aryl and alkyl OPFRs were easier to reduce and less affected by the upgrading. Because OPFRs have been widely used in plastic materials such as pipes, WWTP upgrading - which usually requires more aeration and addition of reagents and instruments and the aim of which is normally to reduce more COD, N and P -- has introduced more OPFRs into the water within the WWTP.


Assuntos
Retardadores de Chama/análise , Compostos Organofosforados/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Organofosfatos , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA